Skip to main content

Advertisement

Log in

„Tissue inhibitor of metalloproteinase 2“ und „insulin-like growth factor-binding protein 7“

Neue Biomarkerkombination zur Früherkennung der akuten Nierenschädigung in der Herzchirurgie

Tissue inhibitor of metalloproteinase 2 and insulin-like growth factor-binding protein 7

New biomarker combination for early recognition of acute kidney injury in cardiac surgery

  • Perioperative Medizin
  • Published:
Zeitschrift für Herz-,Thorax- und Gefäßchirurgie Aims and scope

Zusammenfassung

Die akute Nierenschädigung („acute kidney injury“, AKI) tritt mit einer Inzidenz bis zu 30 % nach kardiochirurgischen Eingriffen auf, bei etwa 1 % der Patienten als dialysepflichtiges Nierenversagen, weshalb der Begriff „cardiac surgery-associated acute kidney injury“ (CSA-AKI) geprägt wurde. Die AKI-assoziierte Mortalität beträgt zwischen 15 % und 30 %, und eine CSA-AKI erhöht die Mortalität, unabhängig von der Komorbidität. Patienten mit AKI sollten schnell identifiziert werden, um früh prophylaktische oder therapeutische Interventionen einzuleiten und eine weitere Nierenschädigung zu vermeiden. Serum-Kreatinin-Konzentration und Diurese als Goldstandard in der Diagnose und der Definition der AKI sind für diese frühe Identifikation nicht geeignet. Auch viele neue Biomarker, wie Neutrophilengelatinase-assoziiertes Lipocalin (NGAL) oder Cystatin C haben sich nach initial vielversprechenden Studienergebnissen nicht in der klinischen Routine durchsetzen können. In mehreren multizentrischen Studien zeigten sich „insulin-like growth factor-binding protein 7“ (IGFBP7) und „tissue inhibitor of metalloproteinase 2“ (TIMP2) als Induktoren eines Zellzyklusarrests allen anderen der 340 untersuchten Biomarker im Hinblick auf die Vorhersage einer AKI überlegen. Auch rein kardiochirurgische Arbeiten bestätigen die hohe Sensitivität und Spezifität in der Früherkennung einer drohenden AKI. Erste prospektiv-randomisierte Studien belegen, dass die frühe Erkennung des AKI und die zeitgerechte Einleitung präventiver oder therapeutischer Interventionen, basierend auf diesen vielversprechenden Biomarkern, die Progression des AKI senken können.

Abstract

Acute kidney injury (AKI) occurs in up to 30% of patients after cardiac surgery and in approximately 1% results in kidney failure necessitating dialysis. This has given rise to the term cardiac surgery-associated AKI (CSA-AKI). The mortality associated with AKI is 15–30% and CSA-AKI increases the mortality independent of comorbidities. Patients with AKI must be rapidly identified in order to initiate prophylactic or therapeutic interventions at an early stage and avoid further renal damage. Serum creatinine concentrations and diuresis, which are the gold standard in the diagnosis and definition of AKI, are not suitable for this early recognition. Following very promising results of initial studies many new biomarkers, such as neutrophil gelatinase-associated lipocalin (NGAL) and cystatin C have not become established in the clinical routine. In many multicentric studies insulin-like growth factor-binding protein 7 (IGFBP7) and tissue inhibitor of metalloproteinase 2 (TIMP2), which are inductors of cell cycle arrest, were found to be superior to all of the other 340 biomarkers investigated with respect to prediction of AKI. Even studies purely involving cardiothoracic surgery confirmed the high sensitivity and specificity in the early recognition of impending AKI. A recently published randomized trial showed that early recognition of AKI and timely initiation of preventive or therapeutic interventions based on these promising biomarkers, can inhibit the progression of AKI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Lagny MG, Jouret F, Koch JN, Blaffart F, Donneau AF, Albert A et al (2015) Incidence and outcomes of acute kidney injury after cardiac surgery using either criteria of the RIFLE classification. BMC Nephrol 16:76

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lassnigg A, Schmid ER, Hiesmayr M, Falk C, Druml W, Bauer P, Schmidlin D (2008) Impact of minimal increases in serum creatinine on outcome in patients after cardiothoracic surgery: do we have to revise current definitions of acute renal failure? Crit Care Med 36(4):1129–1137

    Article  CAS  PubMed  Google Scholar 

  3. Dasta JF, Kane-Gill SL, Durtschi AJ, Pathak DS, Kellum JA (2008) Costs and outcomes of acute kidney injury (AKI) following cardiac surgery. Nephrol Dial Transplant 23(6):1970–1974

    Article  PubMed  Google Scholar 

  4. Pickering JW, James MT, Palmer SC (2015) Acute kidney injury and prognosis after cardiopulmonary bypass: a meta-analysis of cohort studies. Am J Kidney Dis 65(2):283–293

    Article  PubMed  Google Scholar 

  5. Bellomo R, Ronco C, Kellum JA, Palevsky P, ADQI workgroup (2004) Acute renal failure – definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 8:R204

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mehta RL, Kellum JA, Shah SV et al (2007) Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 11:R31

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group (2012) KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Int 2:1–138

    Article  Google Scholar 

  8. Waikar SS, Betensky RA, Emerson SC, Bonventre JV (2012) Imperfect gold standards for kidney injury biomarker evaluation. J Am Soc Nephrol 23(1):13–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Svenmarker S, Häggmark S, Holmgren A, Näslund U (2011) Serum markers are not reliable measures of renal function in conjunction with cardiopulmonary bypass. Interact Cardiovasc Thorac Surg 12(5):713–717

    Article  PubMed  Google Scholar 

  10. Odutayo A, Cherney D (2012) Cystatin C and acute changes in glomerular filtration rate. Clin Nephrol 78(1):64–75

    Article  CAS  PubMed  Google Scholar 

  11. Bagshaw SM, Bellomo R (2010) Cystatin C in acute kidney injury. Curr Opin Crit Care 16(6):533–539

    Article  PubMed  Google Scholar 

  12. Kashani K, Al-Khafaji A, Ardiles T, Artigas A, Bagshaw SM, Bell M, Bihorac A, Birkhahn R, Cely CM, Chawla LS, Davison DL, Feldkamp T, Forni LG, Gong MN, Gunnerson KJ, Haase M, Hackett J, Honore PM, Hoste EA, Joannes-Boyau O, Joannidis M, Kim P, Koyner JL, Laskowitz DT, Lissauer ME, Marx G, McCullough PA, Mullaney S, Ostermann M, Rimmelé T, Shapiro NI, Shaw AD, Shi J, Sprague AM, Vincent JL, Vinsonneau C, Wagner L, Walker MG, Wilkerson RG, Zacharowski K, Kellum JA (2013) Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care 17(1):R25

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hoste EA, McCullough PA, Kashani K, Chawla LS, Joannidis M, Shaw AD, Feldkamp T, Uettwiller-Geiger DL, McCarthy P, Shi J, Walker MG, Kellum JA, Sapphire Investigators (2014) Derivation and validation of cutoffs for clinical use of cell cycle arrest biomarkers. Nephrol Dial Transplant 29(11):2054–2061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bihorac A, Chawla LS, Shaw AD et al (2014) Validation of cell-cycle arrest biomarkers for acute kidney injury using clinical adjudication. Am J Respir Crit Care Med 189:932–939

    Article  CAS  PubMed  Google Scholar 

  15. Pianta TJ, Peake PW, Pickering JW, Kelleher M, Buckley NA, Endre ZH (2015) Evaluation of biomarkers of cell cycle arrest and inflammation in prediction of dialysis or recovery after kidney transplantation. Transpl Int 28(12):1392–1404

    Article  CAS  PubMed  Google Scholar 

  16. Westhoff JH, Tönshoff B, Waldherr S, Pöschl J, Teufel U, Westhoff TH, Fichtner A (2015) Urinary Tissue Inhibitor of Metalloproteinase-2 (TIMP-2) • Insulin-Like Growth Factor-Binding Protein 7 (IGFBP7) predicts adverse outcome in pediatric acute kidney injury. PLOS ONE 10(11):e0143628

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gunnerson KJ, Shaw AD, Chawla LS, Bihorac A, Al-Khafaji A, Kashani K, Lissauer M, Shi J, Walker MG, Kellum JA, Sapphire Topaz investigators (2016) TIMP2•IGFBP7 biomarker panel accurately predicts acute kidney injury in high-risk surgical patients. J Trauma Acute Care Surg 80(2):243–249

    Article  CAS  PubMed  Google Scholar 

  18. Pilarczyk K, Edayadiyil-Dudasova M, Wendt D, Demircioglu E, Benedik J, Dohle DS, Jakob H, Dusse F (2015) Urinary [TIMP-2]*[IGFBP7] for early prediction of acute kidney injury after coronary artery bypass surgery. Ann Intensive Care 5(1):50

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dusse F, Edayadiyil-Dudásova M, Thielmann M, Wendt D, Kahlert P, Demircioglu E, Jakob H, Schaefer ST, Pilarczyk K (2016) Early prediction of acute kidney injury after transapical and transaortic aortic valve implantation with urinary G1 cell cycle arrest biomarkers. BMC Anesthesiol 16:76

    Article  PubMed  PubMed Central  Google Scholar 

  20. Meersch M, Schmidt C, Van Aken H, Martens S, Rossaint J, Singbartl K, Görlich D, Kellum JA, Zarbock A (2014) Urinary TIMP-2 and IGFBP7 as early biomarkers of acute kidney injury and renal recovery following cardiac surgery. PLOS ONE 9(3):e93460

    Article  PubMed  PubMed Central  Google Scholar 

  21. Meersch M, Schmidt C, Van Aken H, Rossaint J, Görlich D, Stege D, Malec E, Januszewska K, Zarbock A (2014) Validation of cell-cycle arrest biomarkers for acute kidney injury after pediatric cardiac surgery. PLOS ONE 9(10):e110865

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wetz AJ, Richardt EM, Wand S, Kunze N, Schotola H, Quintel M, Bräuer A, Moerer O (2015) Quantification of urinary TIMP-2 and IGFBP-7: an adequate diagnostic test to predict acute kidney injury after cardiac surgery? Crit Care 6(19):3

    Article  Google Scholar 

  23. Zarbock A, Schmidt C, Van Aken H et al (2015) Effect of remote ischemic preconditioning on kidney injury among high-risk patients undergoing cardiac surgery: a randomized clinical trial. JAMA 313(21):2133–2141

    Article  CAS  PubMed  Google Scholar 

  24. Vijayan A, Faubel S, Askenazi DJ, Cerda J, Fissell WH, Heung M, Humphreys BD, Koyner JL, Liu KD, Mour G, Nolin TD, Bihorac A, American Society of Nephrology Acute Kidney Injury Advisory Group (2016) Clinical use of the urine biomarker [TIMP-2] × [IGFBP7] for acute kidney injury risk assessment. Am J Kidney Dis 68(1):19–28

    Article  CAS  PubMed  Google Scholar 

  25. Basu RK, Wong HR, Krawczeski CD, Wheeler DS, Manning PB, Chawla LS, Devarajan P, Goldstein SL (2014) Combining functional and tubular damage biomarkers improves diagnostic precision for acute kidney injury after cardiac surgery. J Am Coll Cardiol 64(25):2753–2762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kolhe NV, Reilly T, Leung J, Fluck RJ, Swinscoe KE, Selby NM, Taal MW (2016) A simple care bundle for use in acute kidney injury: a propensity score-matched cohort study. Nephrol Dial Transplant 31(11):1846–1854

    Article  PubMed  Google Scholar 

  27. Meersch M, Schmidt C, Hoffmeier A, Van Aken H, Wempe C, Gerss J, Zarbock A (2017) Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controlled trial. Intensive Care Med. doi:10.1007/s00134-016-4670-3

  28. Karvellas CJ, Farhat MR, Sajjad I et al (2011) A comparison of early versus late initiation of renal replacement therapy in critically ill patients with acute kidney injury: a systematic review and meta-analysis. Crit Care 1:R72

    Article  Google Scholar 

  29. Zarbock A, Kellum JA, Schmidt C, Van Aken H, Wempe C, Pavenstädt H, Boanta A, Gerß J, Meersch M (2016) Effect of early vs delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury: the ELAIN randomized clinical trial. JAMA 315(20):2190–2199

    Article  CAS  PubMed  Google Scholar 

  30. Gaudry S, Hajage D, Schortgen F, Martin-Lefevre L, Pons B, Boulet E, Boyer A, Chevrel G, Lerolle N, Carpentier D, de Prost N, Lautrette A, Bretagnol A, Mayaux J, Nseir S, Megarbane B, Thirion M, Forel JM, Maizel J, Yonis H, Markowicz P, Thiery G, Tubach F, Ricard JD, Dreyfuss D, AKIKI Study Group (2016) Initiation strategies for renal-replacement therapy in the intensive care unit. N Engl J Med 375(2):122–133

    Article  PubMed  Google Scholar 

  31. Zazzeron L, Gattinoni L, Caironi P (2016) Role of albumin, starches and gelatins versus crystalloids in volume resuscitation of critically ill patients. Curr Opin Crit Care 22(5):428–436

    Article  PubMed  Google Scholar 

  32. Asfar P, Meziani F, Hamel JF, Grelon F, Megarbane B, Anguel N, Mira JP, Dequin PF, Gergaud S, Weiss N, Legay F, Le Tulzo Y, Conrad M, Robert R, Gonzalez F, Guitton C, Tamion F, Tonnelier JM, Guezennec P, Van Der Linden T, Vieillard-Baron A, Mariotte E, Pradel G, Lesieur O, Ricard JD, Hervé F, du Cheyron D, Guerin C, Mercat A, Teboul JL, Radermacher P, SEPSISPAM Investigators (2014) High versus low blood-pressure target in patients with septic shock. N Engl J Med 370(17):1583–1593

    Article  CAS  PubMed  Google Scholar 

  33. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M, Early Goal-Directed Therapy Collaborative Group (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345(19):1368–1377

    Article  CAS  PubMed  Google Scholar 

  34. Mouncey PR, Osborn TM, Power GS, Harrison DA, Sadique MZ, Grieve RD, Jahan R, Harvey SE, Bell D, Bion JF, Coats TJ, Singer M, Young JD, Rowan KM, ProMISe Trial Investigators (2015) Trial of early, goal-directed resuscitation for septic shock. N Engl J Med 372(14):1301–1311

    Article  CAS  PubMed  Google Scholar 

  35. ARISE Investigators, ANZICS Clinical Trials Group, Peake SL, Delaney A, Bailey M, Bellomo R, Cameron PA, Cooper DJ, Higgins AM, Holdgate A, Howe BD, Webb SA, Williams P (2014) Goal-directed resuscitation for patients with early septic shock. N Engl J Med 371(16):1496–1506

    Article  Google Scholar 

  36. ProCESS Investigators, Yealy DM, Kellum JA, Huang DT, Barnato AE, Weissfeld LA, Pike F, Terndrup T, Wang HE, Hou PC, LoVecchio F, Filbin MR, Shapiro NI, Angus DC (2014) A randomized trial of protocol-based care for early septic shock. N Engl J Med 370(18):1683–1693

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Pilarczyk.

Ethics declarations

Interessenkonflikt

Die Fa. Astute Medical hat wissenschaftliche Arbeiten zum Einsatz von TIMP2 und IGFBP7 als neuer Biomarker zur Früherkennung der AKI in der Herzchirurgie von K. Pilarczyk, B. Panholzer, A. Haneya und J. Cremer finanziell unterstützt. N. Haake gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pilarczyk, K., Panholzer, B., Haneya, A. et al. „Tissue inhibitor of metalloproteinase 2“ und „insulin-like growth factor-binding protein 7“. Z Herz- Thorax- Gefäßchir 31, 190–199 (2017). https://doi.org/10.1007/s00398-017-0142-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00398-017-0142-5

Schlüsselwörter

Keywords

Navigation