Skip to main content
Log in

Numerical and experimental application of the automated slump test for yield stress evaluation of mineralogical and polymeric materials

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

This work presents reliable empirical correlations of slump and spread measurements with yield stress of different materials based on the automated slump test methodology (capable of monitoring the transient regime of the slump test and minimizing operational errors — better control and reproducibility of tests). Measures of the final samples, such as slump and spread, are then correlated to yield stress, assessed through a rotational rheometer. The reliability of this methodology is corroborated by numerical simulations of the slump test using Ansys Fluent 14.5. A series of sensitivity tests was made and numerical results showed the importance of including the mold and its lifting velocity in the simulations. Such experimental control and good agreement of numerical-experimental results allowed the definition of well-validated empirical models for yield stress estimation. Correlations with an elevated coefficient of determination (\({{\varvec{R}}}^{2}>0.90\)) were obtained using a new dimensionless parameter relating slump and spread measurements.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Ancey C (2002) Rhéophysique des suspensions concentrées. Application à la géophysique alpine. Thesis, Institut National Polytechnique de Grenoble

  • Barnes HA, Nguyen QD (2001) Rotating vane rheometry - a review. J Non-Newton Fluid 98(1):1–14

    Article  CAS  Google Scholar 

  • Baudez JC, Chabot F, Coussot P (2002) Rheological interpretation of the slump test. Appl Rheol 12(3):133–141

    Article  Google Scholar 

  • Bauer E, De Sousa JG, Guimarães EA, Silva FGS (2007) Study of the laboratory vane test on mortars. Build Environ 42(1):86–92

    Article  Google Scholar 

  • Boger DV (2013) Rheology of slurries and environmental impacts in the mining industry. Annu Rev Chem Biomol Eng 4:239–257

    Article  CAS  Google Scholar 

  • Bourne M (2002) Food texture and viscosity: concept and measurement. Elsevier

    Book  Google Scholar 

  • Bouvet A, Ghorbel E, Bennacer R (2010) The mini-conical slump flow test: analysis and numerical study. Cem Concr Res 40(10):1517–1523

    Article  CAS  Google Scholar 

  • Burger J, Haldenwang R, Alderman N (2010) Experimental database for non-Newtonian flow in four channel shapes. J Hydraul Res 48(3):363–370

    Article  Google Scholar 

  • Celik IB, Ghia U, Roache PJ, Freitas CJ (2008) Procedure for estimation and reporting of uncertainty due to discretization in cfd applications. J Fluids Eng 130(7):078001

    Article  Google Scholar 

  • Chambon G, Ghemmour A, Naaim M (2015) Experimental investigation of viscoplastic free-surface flows in a steady uniform regime. J Fluid Mech 754:332

    Article  Google Scholar 

  • Chaparian E, Nasouri B (2018) L-box - A tool for measuring the “yield stress”: a theoretical study. Phys Fluids 30(8):083101

    Article  Google Scholar 

  • Chidiac SE, Maadanin O, Razaqpur AG, Mailvaganam NP (2000) Controlling the quality of fresh concrete: a new approach. Mag Concrete Res 52(5):353–364

    Article  Google Scholar 

  • Choi MS, Lee JS, Ryu KS, Koh KT, Kwon SH (2016) Estimation of rheological properties of UHPC using mini slump test. Constr Build Mater 106:632–639

    Article  Google Scholar 

  • Christensen G (1991) Modelling the flow of fresh concrete: the slump test. Thesis, Faculty of Princeton University

  • Chuanhu Z, Songgui C, Qicheng S, Feng J (2016) Free-surface simulations of Newtonian and non-Newtonian fluids with the lattice Boltzmann method. Acta Geol Sin 90(3):999–1010

    Article  CAS  Google Scholar 

  • Clayton S, Grice TG, Boger DV (2003) Analysis of the slump test for on-site yield stress measurement of mineral suspensions. Int J Miner Process 70(1–4):3–21

    Article  CAS  Google Scholar 

  • Coussot P (1994) Steady, laminar, flow of concentrated mud suspensions in open channel. J Hydraul Res 32(4):535–559

    Article  Google Scholar 

  • Coussot P (1995) Structural similarity and transition from Newtonian to non-Newtonian behavior for clay-water suspensions. Phys Rev Lett 74(20):3971

    Article  CAS  Google Scholar 

  • Coussot P (2014) Yield stress fluid flows: a review of experimental data. J Non-Newton Fluid 211:31–49

    Article  CAS  Google Scholar 

  • Coussot P, Proust S, Ancey C (1996) Rheological interpretation of deposits of yield stress fluids. J Non-Newton Fluid 66(1):55–70

    Article  CAS  Google Scholar 

  • Coussot P, Piau JM (1994) On the behavior of fine mud suspensions. Rheol Acta 33(3):175–184

    Article  CAS  Google Scholar 

  • Cremonesi M, Ferrara L, Frangi A, Perego U (2010) Simulation of the flow of fresh cement suspensions by a Lagrangian finite element approach. J Non-Newton Fluid 165(23–24):1555–1563

    Article  CAS  Google Scholar 

  • De Larrard F, Ferraris CF, Sedran T (1998) Fresh concrete: a Herschel-Bulkley material. Mater Struct 31(7):494–498

    Article  Google Scholar 

  • De Matos PR, Pilar R, Casagrande CA, Gleise PJP, Pelisser F (2020) Comparison between methods for determining the yield stress of cement pastes. J Braz Soc Mech Sc Eng 42(1):1–13

    Google Scholar 

  • Dinkgreve M, Paredes J, Denn MM, Bonn D (2016) On different ways of measuring “the” yield stress. J Non-Newton Fluid 238:233–241

    Article  CAS  Google Scholar 

  • Eshtiaghi N, Markis F, Yap SD, Baudez JC, Slatter P (2013) Rheological characterisation of municipal sludge: a review. Water Res 47(15):5493–5510

    Article  CAS  Google Scholar 

  • Ferraris CF, De Larrard F (1998) Testing and modeling of fresh concrete rheology, National Institute of Standards and Technology

  • Fluent A (2012) 14.5-theory guide. Ansys. Inc., Canonsburg

    Google Scholar 

  • Frigaard I, Nouar C (2005) On the usage of viscosity regularisation methods for visco-plastic fluid flow computation. J Non-Newton Fluid 127(1):1–26

    Article  CAS  Google Scholar 

  • Gao J, Fourie A (2015a) Using the flume test for yield stress measurement of thickened tailings. Miner Eng 81:116–127

    Article  CAS  Google Scholar 

  • Gao J, Fourie A (2015b) Spread is better: an investigation of the mini-slump test. Miner Eng 71:120–132

    Article  CAS  Google Scholar 

  • Gutierrez L, Pawlik M (2015) Observations on the yielding behavior of oil sand slurries under vane and slump tests. Can J Chem Eng 93(8):1392–1402

    Article  CAS  Google Scholar 

  • Haldenwang R, Slatter P (2006) Experimental procedure and database for non-Newtonian open channel flow. J Hydraul Res 44(2):283–287

    Article  Google Scholar 

  • Hapanowicz J (2020) Proposition of non-standard method useful for viscosity measurements of unstable two-phase systems coupled with examples of its application. Measurement 164:108113

    Article  Google Scholar 

  • Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39(1):201–225

    Article  Google Scholar 

  • Huang X, Garcia MH (1998) A Herschel-Bulkley model for mud flow down a slope. J Fluid Mech 374:305–333

    Article  Google Scholar 

  • Javadi S, Gupta R, Slatter P, Bhattacharya S (2017) Non-Newtonian thickened tailings slurry flow through open channels. Int J Min Miner Eng 8(4):310–333

    Article  Google Scholar 

  • Kiryu HS (2006) Investigação reológica e análise mecânica de compósitos não-newtonianos. Dissertation, Universidade Estadual Paulista, Ilha Solteira

  • Kulasegaram S, Karihaloo BL, Ghanbari A (2011) Modelling the flow of self-compacting concrete. Int J Numer Anal Methods Geomech 35(6):713–723

    Article  Google Scholar 

  • Kurokawa Y (1996) Study on slump test and slump-flow test of fresh concrete. Trans Japan Concr Inst 16:25–32

    Google Scholar 

  • Le Bouteiller C, Chambon G, Naaim-Bouvet F, Mathys N (2021) Hydraulics and rheology of natural hyperconcentrated flows from Draix-Bleone observatory. French Alps J Hydraul Res 59(2):181–195

    Article  Google Scholar 

  • Li W, Guo L, Liu G, Pan A, Zhang T (2020) Analytical and experimental investigation of the relationship between spread and yield stress in the mini-cone test for cemented tailings backfill. Constr Build Mater 260:119770

    Article  Google Scholar 

  • Li Y, Hao J, Jin C, Wang Z, Liu J (2020b) Simulation of the flowability of fresh concrete by discrete element method. Front Mater 7:487

    Google Scholar 

  • Li Y, Mu J, Wang Z, Li Y, Du H (2021) Numerical simulation on slump test of fresh concrete based on lattice Boltzmann method. Cem Concr Compos 107:104136

    Article  Google Scholar 

  • Liddel PV, Boger DV (1996) Yield stress measurements with the vane. J Non-Newton Fluid 63(2–3):235–261

    Article  Google Scholar 

  • Liu L, Fang Z, Wang M, Qi C, Zhao Y, Huan C (2020) Experimental and numerical study on rheological properties of ice-containing cement paste backfill slurry. Powder Technol 370:206–214

    Article  CAS  Google Scholar 

  • Liu Y, Balmforth NJ, Hormozi S (2018) Axisymmetric viscoplastic dambreaks and the slump test. J Non-Newton Fluid 258:45–57

    Article  CAS  Google Scholar 

  • Maciel GF, Barbosa MP, Pereira JB (2016) Análise comparativa da tensão limite de escoamento de argamassas por meio da técnica de Pashias e reometria rotacional. Matéria (rio De Janeiro) 21(4):866–879

    Article  Google Scholar 

  • Maciel GM, Santos HK, Ferreira FO (2009) Rheological analysis of water clay compositions in order to investigate mudflows developing in canals. J Braz Soc Mech Sci & Eng 31(1):64–74

    Article  Google Scholar 

  • Mahmoodzadeh F, Chidiac SE (2013) Rheological models for predicting plastic viscosity and yield stress of fresh concrete. Cem Concr Res 49:1–9

    Article  CAS  Google Scholar 

  • Mechtcherine V, Gram A, Krenzer K, Schwabe JH, Shyshko S, Roussel N (2014) Simulation of fresh concrete flow using discrete element method (DEM): theory and applications. Mater Struct 47(4):615–630

    Article  Google Scholar 

  • Minussi RB, Maciel GF (2012) Numerical experimental comparison of dam break flows with non-Newtonian fluids. J Braz Soc Mech Sci & Eng 34(2):167–178

    Article  Google Scholar 

  • Mizani S, Simms P (2016) Method-dependent variation of yield stress in a thickened gold tailings explained using a structure based viscosity model. Miner Eng 98:40–48

    Article  CAS  Google Scholar 

  • Murata J (1984) Flow and deformation of fresh concrete. Mater Struct 17(98):117–129

    Google Scholar 

  • NBR 16889 (2020) Determinação da consistência pelo abatimento do tronco de cone. Rio de Janeiro: Associação Brasileira de Normas Técnicas (ABNT)

  • Nguyen QD, Boger DV (1985) Direct yield stress measurement with the vane method. J Rheol 29(3):335–347

    Article  Google Scholar 

  • Nguyen TLH, Roussel N, Coussot P (2006) Correlation between L-box test and rheological parameters of a homogeneous yield stress fluid. Cem Concr Res 36(10):1789–1796

    Article  CAS  Google Scholar 

  • Pashias N, Boger DV, Summers J, Glenister DJ (1996) A fifty cent rheometer for yield stress measurement. J Rheol 40(6):1179–1189

    Article  CAS  Google Scholar 

  • Pereira JB, Maciel GF (2021) Automated slump test: an effective alternative in predicting rheological properties and an efficient tool for providing the quality control of materials. Measurement 178:109384

    Article  Google Scholar 

  • Piau JM (2007) Carbopol gels: Elastoviscoplastic and slippery glasses made of individual swollen sponges: meso-and macroscopic properties, constitutive equations and scaling laws. J Non-Newton Fluid 144(1):1–29

    Article  CAS  Google Scholar 

  • Pierre A, Lanos C, Estelle P (2013) Extension of spread-slump formulae for yield stress evaluation. Appl Rheol 23(6):36–44

    Google Scholar 

  • Pierre A, Perrot A, Histace A, Gharsalli S, Kadri EH (2017) A study on the limitations of a vane rheometer for mineral suspensions using image processing. Rheol Acta 56(4):351–367

    Article  CAS  Google Scholar 

  • Roussel N (2006) Correlation between yield stress and slump: comparison between numerical simulations and concrete rheometers results. Mater Struct 39(4):501–509

    Article  Google Scholar 

  • Roussel N (2007) The LCPC BOX: a cheap and simple technique for yield stress measurements of SCC. Mater Struct 40(9):889–896

    Article  Google Scholar 

  • Roussel N, Coussot P (2005) Fifty-cent rheometer for yield stress measurements: from slump to spreading flow. J Rheol 49(3):705–718

    Article  CAS  Google Scholar 

  • Saak AW, Jennings HM, Shah SP (2004) A generalized approach for the determination of yield stress by slump and slump flow. Cem Concr Res 34(3):363–371

    Article  CAS  Google Scholar 

  • Santos FL (2003) Estudo teórico-experimental em via de determinação de lei de atrito em escoamentos de fluidos hiperconcentrados. Dissertation, Universidade Estadual Paulista, Ilha Solteira

  • Schowalter WR, Christensen, (1998) Toward a rationalization of the slump test for fresh concrete: comparisons of calculations and experiments. J Rheol 42(4):865–870

    Article  CAS  Google Scholar 

  • Staron L, Lagrée PY, Ray P, Popinet S (2013) Scaling laws for the slumping of a Bingham plastic fluid. J Rheol 57(4):1265–1280

    Article  CAS  Google Scholar 

  • Tanigawa Y, Mori H (1989) Analytical study on deformation of fresh concrete. J Eng Mech 115(3):493–508

    Google Scholar 

  • Thompson RL, Sica LU, De Souza Mendes PR (2018) The yield stress tensor. J Non-Newton Fluid 261:211–219

    Article  CAS  Google Scholar 

  • Wan Z (1982) Bed material movement in hyperconcentrated flow. Ser Pap 31. Inst Hydrodyn Hydraul Eng, Tech Univ Denmark

  • Wu J, Liu X, Xu H, Du H (2016) Simulation on the self-compacting concrete by an enhanced Lagrangian particle method. Adv Mater Sci Eng 2016:8070748

    Article  Google Scholar 

  • Yang HJ, Wei FQ, Hu KH, Zhou GD, Lyu J (2015) Comparison of rheometric devices for measuring the rheological parameters of debris flow slurry. J Mt Sc 12(5):1125–1134

    Article  Google Scholar 

  • Youngs D (1982) Time-dependent multi-material flow with large fluid distortion Numerical Methods for Fluid Dynamics. Academic Press, 273–285

  • Yu B, Ma Y, Qi X (2013) Experimental study on the influence of clay minerals on the yield stress of debris flows. J Hydraul Eng 139(4):364–373

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank National Council for Scientific and Technological Development—CNPq for the scholarship (No. 133576/2016-7) and for funding the project (No. 449550/2014-1), and São Paulo Research Foundation FAPESP (No. 2015/25518-8).

Funding

This research was funded by National Council for Scientific and Technological Development—CNPq (No. 449550/2014–1) and São Paulo Research Foundation—FAPESP (No. 2015/25518–8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Batista Pereira.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Figures 22, 23, 24, and 25 show the sensitivity test results regarding the mesh size, CFL condition, regularization parameter, and residuals, respectively. The results indicate that the slump \(\mathrm{S}\) has low sensitivity to the mesh size, CFL condition, and regularization parameters both on the transient and steady phases and the convergence criteria are the main uncertainty source for the simulation. Based on the chosen numerical parameters (\(\Delta x=1.5\mathrm{ mm}\), \(CFL=0.25\), \({\dot{\gamma }}_{c}=0.01 {\mathrm{s}}^{-1},\) and \(res=7.5\times {10}^{-8}\)), the sensitivity tests provide the following uncertainties for each numerical parameter regarding the final slump: \(0.078\mathrm{\%}\) for mesh size; \(0.0042\mathrm{\%}\) for CFL condition; \(0.00017\mathrm{\%}\) for regularization parameter; and \(0.27\mathrm{\%}\) for convergence criteria. The composition of uncertainties leads to a total uncertainty of \(0.28\mathrm{\%}\) regarding the final slump.

Fig. 22
figure 22

Mesh sensitivity test using three different mesh sizes (\(\Delta {x}_{1}=1.5\mathrm{ mm}\), \(\Delta {x}_{2}=2.25\mathrm{ mm},\) and \(\Delta {x}_{3}=3.375\mathrm{ mm}\)). The uncertainty bar for \(\Delta {x}_{1}\) is showed in the detail window

Fig. 23
figure 23

Time sensitivity test using three different CFL conditions (CFL_1 = 0.0625, CFL_2 = 0.25, and CFL_3 = 0.90). The uncertainty bar for CFL_1 is showed in the detail window

Fig. 24
figure 24

Regularization parameter sensitivity test using three different critical shear rates (\({\dot{\gamma }}_{{c}_{1}}=0.01 {\mathrm{s}}^{-1}\), \({\dot{\gamma }}_{{c}_{2}}=0.1 {\mathrm{s}}^{-1}\), and \({\dot{\gamma }}_{{c}_{3}}=0.5 {\mathrm{s}}^{-1}\)). The uncertainty bar for \({\dot{\gamma }}_{{c}_{1}}\) is showed in the detail window

Fig. 25
figure 25

Convergence criteria sensitivity test using three different criteria based on residuals (\({res}_{1}=7.5\times {10}^{-8}\), \({res}_{2}=1.0\times {10}^{-7}\), and \({res}_{3}=5.0\times {10}^{-7}\)). The uncertainty bar for \({res}_{1}\) is showed in the detail window

The results indicate that the simulation is highly dependent on convergence criteria. Even the larger criterion is stricter than the criterion recommended by ANSYS Fluent (Fluent 2012) and used as a rule of thumb by CFD simulations (\(res={10}^{-6}\)). Thus, the stricter convergence criterion was chosen to simulate all the numerical cases.

The slump behavior does not present significant dependence on the regularization parameter, as shown in Fig. 24. In order to correctly choose the regularization parameter, it was chosen based on the spread velocity along time, as shown in Fig. 26. Higher regularization parameters yield to significative spread velocities at final instants, while a value of \(0.01 {\mathrm{s}}^{-1}\) shows to be sufficient to model the spread stoppage.

Fig. 26
figure 26

Spread velocity \({V}_{D}\) in function of time \(t\). Detail window shows residual spread velocity due to the bi-viscous regularization model

Additionally, a time-step sensitivity test of the gradual slump test was carried out using the sample \(C0.17\) (\({\tau }_{c}=57.12 Pa\), \({K}_{n}=15.35 Pa\cdot {s}^{n}\), \(n=0.42\), and \(\rho =1000 \mathrm{kg}/\mathrm{m}3\)). Figure 27 presents slump over time using three different CFL conditions (\(CF{L}_{1}=0.03125\), \(CF{L}_{2}=0.0625\), and \(CF{L}_{3}=0.125\)) and shows no relevant implications over the numerical slump curves over time.

Fig. 27
figure 27

Time sensitivity for gradual slump test using three different CFL conditions (\({CFL}_{1}=0.03125\), \({\mathrm{CFL}}_{2}=0.0625\), and \({CFL}_{3}=0.125\))

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, J.B., Sáo, Y.T. & de Freitas Maciel, G. Numerical and experimental application of the automated slump test for yield stress evaluation of mineralogical and polymeric materials. Rheol Acta 61, 163–182 (2022). https://doi.org/10.1007/s00397-021-01321-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-021-01321-0

Keywords

Navigation