Skip to main content
Log in

MUnCH: a calculator for propagating statistical and other sources of error in passive microrheology

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

A complete propagation of error procedure for passive microrheology is illustrated using synthetic data from generalized Brownian dynamics. Moreover, measurement errors typical of bead tracking done with laser interferometry are employed. We use the blocking transformation method of Flyvbjerg and Petersen (J Chem Phys 91(1):461–466 1989) applicable to estimating statistical uncertainty in autocorrelations for any time series data, to account properly for the correlation in the bead position data. These contributions to uncertainty in correlations have previously been neglected when calculating the error in the mean-squared displacement of the probe bead (MSD). The uncertainty in the MSD can be underestimated by a factor of about 20 if the correlation in the bead position data is neglected. Using the generalized Stokes-Einstein relation, the uncertainty in the MSD is then propagated to the dynamic modulus. Uncertainties in the bead radius and the trap stiffness are also taken into account. A simple code used to aid in the calculations is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Code availability

All data generated or analysed during this study are included in this published article and its Supplementary Information files.

References

  • Addas KM, Schmidt CF, Tang JX (2004) Microrheology of solutions of semiflexible biopolymer filaments using laser, tweezers interferometry. Phys Rev E 7:021503

    Article  Google Scholar 

  • Becerra D, Córdoba A, Katzarova M, Andreev M, Venerus DC, Schieber JD (2020) Polymer rheology predictions from first principles using the slip-link model. J Rheol 64(5):1035–1043

    Article  CAS  Google Scholar 

  • Córdoba A (2018) The effects of the interplay between motor and Brownian forces on the rheology of active gels. J Phys Chem B 122(15):4267–4277

    Article  Google Scholar 

  • Córdoba A, Indei T, Schieber JD (2012) Elimination of inertia from a generalized Langevin equation: Applications to microbead rheology modeling and data analysis. J Rheol 56(1):185–212

    Article  Google Scholar 

  • Córdoba A, Indei T, Schieber JD (2013) The effects of compressibility, hydrodynamic interaction and inertia on two-point, passive microrheology of viscoelastic materials. Soft Matter 9(13):3521–3534

    Article  Google Scholar 

  • Córdoba A, Schieber JD, Indei T (2012) The effects of hydrodynamic interaction and inertia in determining the high-frequency dynamic modulus of a viscoelastic fluid with two-point passive microrheology. Phys Fluids 24(7):073103

    Article  Google Scholar 

  • Córdoba A, Schieber JD, Indei T (2015) The role of filament length, finite-extensibility and motor force dispersity in stress relaxation and buckling mechanisms in non-sarcomeric active gels. Soft Matter 11 (1):38–57

    Article  Google Scholar 

  • Crocker JC, Valentine MT, Weeks ER, Gisler T, Kaplan PD, Yodh A, Weitz D (2000) Two-point microrheology of inhomogeneous soft materials. Phys Rev Lett 85:888–891

    Article  CAS  Google Scholar 

  • Dawson M, Wirtz D, Hanes J (2003) Enhanced viscoelasticity of human cystic fibrotic sputum correlates with increasing microheterogeneity in particle transport. J Biol Chem 278(50):50393–50401

    Article  CAS  Google Scholar 

  • Dutov P, Schieber JD (2013) Calibration of optical traps by dual trapping of one bead. Opt Lett 38(22):4923–4926

    Article  Google Scholar 

  • Fernandez-Castanon J, Bianchi S, Saglimbeni F, Di Leonardo R, Sciortino F (2018) Microrheology of dna hydrogel gelling and melting on cooling. Soft Matter 14(31):6431–6438

    Article  CAS  Google Scholar 

  • Flyvbjerg H, Petersen HG (1989) Error estimates on averages of correlated data. J Chem Phys 91(1):461–466

    Article  CAS  Google Scholar 

  • Forier K, Messiaen A-S, Raemdonck K, Deschout H, Rejman J, De Baets F, Nelis H, De Smedt SC, Demeester J, Coenye T et al (2013) Transport of nanoparticles in cystic fibrosis sputum and bacterial biofilms by single-particle tracking microscopy. Nanomedicine 8(6):935–949

    Article  CAS  Google Scholar 

  • Fricks J, Yao L, Elston TC, Forest MG (2009) Time-domain methods for diffusive transport in soft matter. SIAM J Appl Math 69:1277–1308

    Article  CAS  Google Scholar 

  • Furst EM, Squires TM (2017) Microrheology. Oxford University Press, Oxford

    Book  Google Scholar 

  • Gardel ML, Valentine MT, Crocker JC, Bausch AR, Weitz DA (2003) Microrheology of entangled F-actin solutions. Phys Rev Lett 91:158302

    Article  CAS  Google Scholar 

  • Indei T, Schieber JD, Córdoba A (2012) Competing effects of particle and medium inertia on particle diffusion in viscoelastic materials, and their ramifications for passive microrheology. Phys Rev E 85 (4):041504

    Article  Google Scholar 

  • Indei T, Schieber JD, Córdoba A, Pilyugina E (2012) Treating inertia in passive microbead rheology. Phys Rev E 85(2):021504

    Article  Google Scholar 

  • Kumar A, Sundararaghavan V, Browning A (2014) Study of temperature dependence of thermal conductivity in cross-linked epoxies using molecular dynamics simulations with long range interactions. Model Simul Mater Sci Eng 22(2):025013

    Article  Google Scholar 

  • Kumar R, Vitali V, Wiedemann T, Meissner R, Minzioni P, Denz C (2021) Multi-frequency passive and active microrheology with optical tweezers. Sci Rep 11(1):1–11

    Google Scholar 

  • Le Goff L, Amblard F, Furst EM (2001) Motor-driven dynamics in actin-myosin networks. Phys Rev Lett 88(1):018101

    Article  Google Scholar 

  • Maier T, Haraszti T (2012) Python algorithms in particle tracking microrheology. Chem Central J 6(1):1–9

    Article  Google Scholar 

  • Mason TG (2000) Estimating the viscoelastic moduli of complex fluids using the generalized Stokes–Einstein equation. Rheologica acta 39(4):371–378

    Article  CAS  Google Scholar 

  • Medronho B, Filipe A, Costa C, Romano A, Lindman B, Edlund H, Norgren M (2018) Microrheology of novel cellulose stabilized oil-in-water emulsions. J Colloid Interface Sci 531:225–232

    Article  CAS  Google Scholar 

  • Mizuno D, Head D, MacKintosh F, Schmidt C (2008) Active and passive microrheology in equilibrium and nonequilibrium systems. Macromolecules 41(19):7194–7202

    Article  CAS  Google Scholar 

  • Mizuno D, Tardin C, Schmidt CF, MacKintosh FC (2007) Nonequilibrium mechanics of active cytoskeletal networks. Science 315(5810):370–373

    Article  CAS  Google Scholar 

  • Palmer A, Xu J, Wirtz D (1998) High-frequency viscoelasticity of crosslinked actin filament networks measured by diffusing wave spectroscopy. Rheol Acta 37(2):97–106

    Article  CAS  Google Scholar 

  • Pelletier V, Gal N, Fournier P, Kilfoil ML (2009) Microrheology of microtubule solutions and actin-microtubule composite networks. Phys Rev Lett 102:188303

    Article  Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in FORTRAN: The art of scientific computing, 2nd ed. Cambridge University Press, Cambridge

    Google Scholar 

  • Rogers SS, Waigh TA, Lu JR (2008) Intracellular microrheology of motile. Amoeba proteus, Biophys J 94(8):3313–3322

    CAS  Google Scholar 

  • Rogers S, Van Der Walle C, Waigh T (2008) Microrheology of bacterial biofilms in vitro: Staphylococcus aureus and Pseudomonas aeruginosa. Langmuir 24(23):13549–13555

    Article  CAS  Google Scholar 

  • Sanchez T, Chen DT, DeCamp SJ, Heymann M, Dogic Z (2012) Spontaneous motion in hierarchically assembled active matter. Nature 491(7424):431–434

    Article  CAS  Google Scholar 

  • Savin T, Doyle PS (2005) Static and dynamic errors in particle tracking microrheology. Biophys J 88:623–638

    Article  CAS  Google Scholar 

  • Schieber JD, Córdoba A, Indei T (2013) The analytic solution of Stokes for time-dependent creeping flow around a sphere: Application to linear viscoelasticity as an ingredient for the generalized Stokes–Einstein relation and microrheology analysis. J Non-Newtonian Fluid Mech 200:3–8

    Article  CAS  Google Scholar 

  • Sheely ML (1932) Glycerol viscosity tables. Ind Eng Chem 24(9):1060–1064

    Article  CAS  Google Scholar 

  • Squires TM, Mason TG (2010) Fluid mechanics of microrheology. Annu Rev Fluid Mech 42:413–438

    Article  Google Scholar 

  • Stuhrmann B, e Silva MS, Depken M, MacKintosh FC, Koenderink GH (2012) Nonequilibrium fluctuations of a remodeling in vitro cytoskeleton. Phys Rev E 86(2):020901

    Article  Google Scholar 

  • Tassieri M, Evans R, Warren RL, Bailey NJ, Cooper JM (2012) Microrheology with optical tweezers: data analysis. New J Phys 14(11):115032

    Article  Google Scholar 

  • Vasilev A, Lorenz T, Breitkopf C (2020) Thermal conductivity of polyisoprene and polybutadiene from molecular dynamics simulations and transient measurements. Polymers 12(5):1081

    Article  CAS  Google Scholar 

  • Wessel AD, Gumalla M, Grosshans J, Schmidt CF (2015) The mechanical properties of early drosophila embryos measured by high-speed video microrheology. Biophys J 108(8):1899–1907

    Article  CAS  Google Scholar 

  • Xing Z, Caciagli A, Cao T, Stoev I, Zupkauskas M, O’Neill T, Wenzel T, Lamboll R, Liu D, Eiser E (2018) Microrheology of dna hydrogels. Proc Natl Acad Sci 115(32):8137–8142

    Article  CAS  Google Scholar 

  • Yamada S, Wirtz D, Kuo SC (2000) Mechanics of living cells measured by laser tracking microrheology. Biophys J 78:1736–1747

    Article  CAS  Google Scholar 

  • Zhou Y, Li B, Li S, Ardoña HAM, Wilson WL, Tovar JD, Schroeder CM (2017) Concentration-driven assembly and sol–gel transition of π-conjugated oligopeptides. ACS Central Sci 3(9):986–994

    Article  CAS  Google Scholar 

Download references

Funding

Partial financial support was received from the Army Research Office grants W911NF-09-2-0071 and W911NF-09-1-0378; and from the National Science Foundation’s Division of Materials Research (Award No 1610115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Córdoba.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(GZ 45.8 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Córdoba, A., Schieber, J.D. MUnCH: a calculator for propagating statistical and other sources of error in passive microrheology. Rheol Acta 61, 49–57 (2022). https://doi.org/10.1007/s00397-021-01312-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-021-01312-1

Keywords

Navigation