Skip to main content
Log in

A new closure approximation based on the Cohen/Padé spring law and a novel method for its implementation

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

A new closure-approximated model based on the Cohen/Padé (CP) spring law is presented. Because it is inspired by the finitely extensible non-linear elastic Peterlin version (FENE-P), the model is titled CP-P. The rheological behaviors in simple and pressure-driven pipe shear flows in both the steady-state and time-dependent conditions are compared between the two models. To this end, a new approach based on the second moment Fokker–Planck equation instead of the Langevin equation is developed, which was confirmed by means of the existing analytical and stochastic data prior to its use. Application of this new approach is restricted to the closure approximated models but at a much less computational expense than the CONNFFESSIT-like simulations. In addition, the Brownian configuration field method is employed to make verification possible and more importantly, to shed light on the rheological performance of the CP model. According to the results, the CP-P model behaves similarly to the FENE-P model for the shear flows. The transient rheological behavior of the CP model is significantly different from that of the CP-P model, but both are the same in steady state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abedijaberi A, Khomami B (2011) Continuum and multi-scale simulation of mixed kinematics polymeric flows with stagnation points: closure approximation and the high Weissenberg number problem. J Nonnewtonian Fluid Mech 166:533–545

    Article  Google Scholar 

  • Alexander M, Spagnolie SE (2015) Introduction to complex fluids. In: Spagnolie SE (ed) Complex fluids in biological systems. Springer, New York, pp. 3–52

    Google Scholar 

  • Binetruy C, Chinesta F, Keunings R (2015) Multi-scale modeling and simulation of polymer flows in polymers, reinforced polymers and composites. Springer, pp 1–42

  • Bird R, Dotson P, Johnson N (1980) Polymer solution rheology based on a finitely extensible bead—spring chain model. J Nonnewtonian Fluid Mech 7:213–235

    Article  Google Scholar 

  • Bird RB, Curtiss C, Armstrong R, Hassager O (1987) Dynamics of polymer liquids Vol. 2 Kinetic Theory, 2nd edn. Wiley, New York

  • Bonvin J, Picasso M (1999) Variance reduction methods for CONNFFESSIT-like simulations. J Nonnewtonian Fluid Mech 84:191–215

    Article  Google Scholar 

  • Chauvière C, Lozinski A (2004) Simulation of dilute polymer solutions using a Fokker–Planck equation. Comput fluids 33:687–696

    Article  Google Scholar 

  • Chinesta F, Keunings R, Leygue A (2013) The proper generalized decomposition for advanced numerical simulations: a primer. Springer Science & Business Media

    Google Scholar 

  • Christainsen RL, Bird RB (1977) Dilute solution rheology: experimental results and finitely extensible nonlinear elastic dumbbell theory. J Nonnewtonian Fluid Mech 3:161–177

    Article  Google Scholar 

  • Cohen A (1991) A Padé approximant to the inverse Langevin function. Rheol Acta 30:270–273

    Article  Google Scholar 

  • Dealy JM, Larson RG (2006) Structure and rheology of molten polymers. Hanser, Munich

    Book  Google Scholar 

  • Du Q, Liu C, Yu P (2005) FENE dumbbell model and its several linear and nonlinear closure approximations. Multiscale Model Simul 4:709–731

    Article  Google Scholar 

  • Hayat T, Siddiqui A, Asghar S (2001) Some simple flows of an Oldroyd-B fluid. Int J Engrg Sci 39:135–147

    Article  Google Scholar 

  • Herrchen M, Öttinger HC (1997) A detailed comparison of various FENE dumbbell models. J Nonnewtonian Fluid Mech 68:17–42

    Article  Google Scholar 

  • Hulsen M, Van Heel A, Van Den Brule B (1997) Simulation of viscoelastic flows using Brownian configuration fields. J Nonnewtonian Fluid Mech 70:79–101

    Article  Google Scholar 

  • Hyon Y, Du Q, Liu C (2008) An enhanced macroscopic closure approximation to the micro-macro FENE model for polymeric materials. Multiscale Model Simul 7:978–1002

    Article  Google Scholar 

  • Jourdain B, Le Bris C, Lelièvre T (2004) On a variance reduction technique for micro–macro simulations of polymeric fluids. J Nonnewtonian Fluid Mech 122:91–106

    Article  Google Scholar 

  • Keunings R (1997) On the Peterlin approximation for finitely extensible dumbbells. J Nonnewtonian Fluid Mech 68:85–100

    Article  Google Scholar 

  • Kröger M (2004) Simple models for complex nonequilibrium fluids. Phys Rep 390:453–551

    Article  Google Scholar 

  • Kröger M (2015) Simple, admissible, and accurate approximants of the inverse Langevin and Brillouin functions, relevant for strong polymer deformations and flows. J Nonnewtonian Fluid Mech 223:77–87

    Article  Google Scholar 

  • Larson RG (2004) The rheology of dilute solutions of flexible polymers: progress and problems. J Rheol 49:1–70

    Article  Google Scholar 

  • Laso M, Öttinger H (1993) Calculation of viscoelastic flow using molecular models: the CONNFFESSIT approach. J Nonnewtonian Fluid Mech 47:1–20

    Article  Google Scholar 

  • Letelier M, Céspedes J (1988) Laminar unsteady flow of elementary non-Newtonian fluids in long pipes. In: Cheremisinoff NP (ed) Encyclopedia of fluid mechanics, vol 7. Gulf Publishing Company, Houston, pp. 55–87

    Google Scholar 

  • Lielens G, Halin P, Jaumain I, Keunings R, Legat V (1998) New closure approximations for the kinetic theory of finitely extensible dumbbells. J Nonnewtonian Fluid Mech 76:249–279

    Article  Google Scholar 

  • Lielens G, Keunings R, Legat V (1999) The FENE-L and FENE-LS closure approximations to the kinetic theory of finitely extensible dumbbells. J Nonnewtonian Fluid Mech 87:179–196

    Article  Google Scholar 

  • Lin Y-H (2011) Polymer viscoelasticity: basics, molecular theories, experiments, and simulations, 2nd edn. World Scientific

  • Mangoubi C, Hulsen MA, Kupferman R (2009) Numerical stability of the method of Brownian configuration fields. J Nonnewtonian Fluid Mech 157:188–196

    Article  Google Scholar 

  • Mochimaru Y (1983) Unsteady-state development of plane Couette flow for viscoelastic fluids. J Nonnewtonian Fluid Mech 12:135–152

    Article  Google Scholar 

  • Oliveira P (2002) An exact solution for tube and slit flow of a FENE-P fluid. Acta Mech 158:157–167

    Article  Google Scholar 

  • Öttinger HC (1996) Stochastic processes in polymeric fluids: tools and examples for developing simulation algorithms. Springer, Berlin

    Book  Google Scholar 

  • Öttinger HC (2009) On the stupendous beauty of closure. J Rheol 53:1285–1304

    Article  Google Scholar 

  • Öttinger H, Van Den Brule B, Hulsen M (1997) Brownian configuration fields and variance reduced CONNFFESSIT. J Nonnewtonian Fluid Mech 70:255–261

    Article  Google Scholar 

  • Sheikh A, Sharif F (2011) Parametric study of FENE and FENE-P models in steady and unsteady flow in a circular pipe using CONNFFESSIT approach. J Nonnewtonian Fluid Mech 166:1012–1023

    Article  Google Scholar 

  • Singh S, Subramanian G, Ansumali S (2013) Lattice fokker planck for dilute polymer dynamics. Phys Rev E 88:013301

    Article  Google Scholar 

  • Treloar LRG (1975) The physics of rubber elasticity. Oxford University Press, USA

    Google Scholar 

  • Van Heel A, Hulsen M, Van den Brule B (1998) On the selection of parameters in the FENE-P model. J Nonnewtonian Fluid Mech 75:253–271

    Article  Google Scholar 

  • Warner HR Jr (1972) Kinetic theory and rheology of dilute suspensions of finitely extendible dumbbells. Ind Eng Chem Fund 11:379–387

    Article  Google Scholar 

  • Waters N, King MM (1970) Unsteady flow of an elastico-viscous liquid. Rheol Acta 9:345–355

    Article  Google Scholar 

  • Waters N, King M (1971) The unsteady flow of an elastico-viscous liquid in a straight pipe of circular cross section. J Phys D 4:204

    Article  Google Scholar 

  • Wedgewood LE, Ostrov DN, Bird RB (1991) A finitely extensible bead-spring chain model for dilute polymer solutions. J Nonnewtonian Fluid Mech 40:119–139

    Article  Google Scholar 

  • Zhou Q, Akhavan R (2003) A comparison of FENE and FENE-P dumbbell and chain models in turbulent flow. J Nonnewtonian Fluid Mech 109:115–155

    Article  Google Scholar 

Download references

Acknowledgments

This paper is dedicated to my students, to whom teaching Polymer Dynamics gave me a chance to improve my own understanding. Without the aid of my colleagues, especially Dr. M.H.N. Famili and Dr. N.G. Ebrahimi, this work could not have been accomplished. I also sincerely appreciate the endless support of my lovely parents and unlimited help from my friends, Dr. B. Farshchian and Dr. H. Bahmanpour.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Sheikh.

Appendices

Appendix 1

According to Table 1, for the Hookean dumbbells h(σ*, b) = 1 which in combination with Eq. 14 simply compiles to

$$ {\left\langle {\boldsymbol{Q}}^{*}{\boldsymbol{Q}}^{*}\right\rangle}_0={\boldsymbol{\sigma}}_0^{*}=\boldsymbol{\delta} $$
(A1)

The initial conformation tensor of FENE-P and CP-P can be obtained similarly, but it needs more complex calculations,

FENE-P

$$ {\left\langle {\boldsymbol{Q}}^{*}{\boldsymbol{Q}}^{*}\right\rangle}_0={\boldsymbol{\sigma}}_0^{*}=\left(1-Tr\left({\mathtt{\sigma}}_0^{*}\right)/b\right)\mathtt{\delta}; $$
(A2)
$$ \Rightarrow Tr\left({\mathtt{\sigma}}_0^{*}\right)=3\left(1-Tr\left({\mathtt{\sigma}}_0^{*}\right)/b\right); $$
(A3)
$$ \Rightarrow Tr\left({\mathtt{\sigma}}_0^{*}\right)=\frac{3b}{b+3}; $$
(A4)
$$ \Rightarrow {\left\langle {\boldsymbol{Q}}^{*}{\boldsymbol{Q}}^{*}\right\rangle}_0={\mathtt{\sigma}}_0^{*}=\frac{b}{b+3}\mathtt{\delta} $$
(A5)

CP-P

$$ {\left\langle {\boldsymbol{Q}}^{*}{\boldsymbol{Q}}^{*}\right\rangle}_0={\mathtt{\sigma}}_0^{*}=\frac{3\left(1-Tr\left({\mathtt{\sigma}}_0^{*}\right)/b\right)}{\left(3-Tr\left({\mathtt{\sigma}}_0^{*}\right)/b\right)}\mathtt{\delta}; $$
(A6)
$$ \Rightarrow Tr\left({\mathtt{\sigma}}_0^{*}\right)=\frac{9\left(1-Tr\left({\mathtt{\sigma}}_0^{*}\right)/b\right)}{\left(3-Tr\left({\mathtt{\sigma}}_0^{*}\right)/b\right)}; $$
(A7)
$$ \Rightarrow {\left(Tr\left({\mathtt{\sigma}}_0^{*}\right)\right)}^2-\left(3b+9\right)Tr\left({\mathtt{\sigma}}_0^{*}\right)+9b=0; $$
(A8)
$$ \Rightarrow Tr\left({\mathtt{\sigma}}_0^{*}\right)=\frac{3b+9-\sqrt{{\left(3b+9\right)}^2-36b}}{2}; $$
(A9)
$$ \Rightarrow {\left\langle {\boldsymbol{Q}}^{*}{\boldsymbol{Q}}^{*}\right\rangle}_0={\mathtt{\sigma}}_0^{*}=\frac{3\sqrt{{\left(b+3\right)}^2-4b}-b-9}{\sqrt{{\left(b+3\right)}^2-4b}+b-3}\mathtt{\delta} $$
(A10)

Appendix 2

Applying Eq. 14 in matrix form when the fluid reaches steady state in the Couette flow yields

$$ \begin{array}{l}\left[\begin{array}{ccc}\hfill 0\hfill & \hfill -\frac{U}{L}\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \end{array}\right]\cdot \left[\begin{array}{ccc}\hfill \left\langle {Q}_x^{*}{Q}_x^{*}\right\rangle \hfill & \hfill \left\langle {Q}_x^{*}{Q}_y^{*}\right\rangle \hfill & \hfill \left\langle {Q}_x^{*}{Q}_z^{*}\right\rangle \hfill \\ {}\hfill \left\langle {Q}_y^{*}{Q}_x^{*}\right\rangle \hfill & \hfill \left\langle {Q}_y^{*}{Q}_y^{*}\right\rangle \hfill & \hfill \left\langle {Q}_y^{*}{Q}_z^{*}\right\rangle \hfill \\ {}\hfill \left\langle {Q}_z^{*}{Q}_x^{*}\right\rangle \hfill & \hfill \left\langle {Q}_z^{*}{Q}_y^{*}\right\rangle \hfill & \hfill \left\langle {Q}_z^{*}{Q}_z^{*}\right\rangle \hfill \end{array}\right]+\left[\begin{array}{ccc}\hfill \left\langle {Q}_x^{*}{Q}_x^{*}\right\rangle \hfill & \hfill \left\langle {Q}_x^{*}{Q}_y^{*}\right\rangle \hfill & \hfill \left\langle {Q}_x^{*}{Q}_z^{*}\right\rangle \hfill \\ {}\hfill \left\langle {Q}_y^{*}{Q}_x^{*}\right\rangle \hfill & \hfill \left\langle {Q}_y^{*}{Q}_y^{*}\right\rangle \hfill & \hfill \left\langle {Q}_y^{*}{Q}_z^{*}\right\rangle \hfill \\ {}\hfill \left\langle {Q}_z^{*}{Q}_x^{*}\right\rangle \hfill & \hfill \left\langle {Q}_z^{*}{Q}_y^{*}\right\rangle \hfill & \hfill \left\langle {Q}_z^{*}{Q}_z^{*}\right\rangle \hfill \end{array}\right]\cdot \left[\begin{array}{ccc}\hfill 0\hfill & \hfill -\frac{U}{L}\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \end{array}\right]\\ {}+\left[\begin{array}{ccc}\hfill \frac{1}{\lambda_{\mathrm{H}}}\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill \frac{1}{\lambda_{\mathrm{H}}}\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill \frac{1}{\lambda_{\mathrm{H}}}\hfill \end{array}\right]-\frac{h}{\lambda_{\mathrm{H}}}\left[\begin{array}{ccc}\hfill \left\langle {Q}_x^{*}{Q}_x^{*}\right\rangle \hfill & \hfill \left\langle {Q}_x^{*}{Q}_y^{*}\right\rangle \hfill & \hfill \left\langle {Q}_x^{*}{Q}_z^{*}\right\rangle \hfill \\ {}\hfill \left\langle {Q}_y^{*}{Q}_x^{*}\right\rangle \hfill & \hfill \left\langle {Q}_y^{*}{Q}_y^{*}\right\rangle \hfill & \hfill \left\langle {Q}_y^{*}{Q}_z^{*}\right\rangle \hfill \\ {}\hfill \left\langle {Q}_z^{*}{Q}_x^{*}\right\rangle \hfill & \hfill \left\langle {Q}_z^{*}{Q}_y^{*}\right\rangle \hfill & \hfill \left\langle {Q}_z^{*}{Q}_z^{*}\right\rangle \hfill \end{array}\right]=0\end{array} $$
(B1)

This provides nine equations as follow:

$$ -\frac{U}{L}\left\langle {Q}_y^{*}{Q}_x^{*}\right\rangle -\left\langle {Q}_x^{*}{Q}_y^{*}\right\rangle \frac{U}{L}+\frac{1}{\lambda_{\mathrm{H}}}-\frac{h}{\lambda_{\mathrm{H}}}\left\langle {Q}_x^{*}{Q}_x^{*}\right\rangle =0 $$
(B2)
$$ -\frac{U}{L}\left\langle {Q}_y^{*}{Q}_y^{*}\right\rangle +0+0-\frac{h}{\lambda_{\mathrm{H}}}\left\langle {Q}_x^{*}{Q}_y^{*}\right\rangle =0 $$
(B3)
$$ -\frac{U}{L}\left\langle {Q}_y^{*}{Q}_z^{*}\right\rangle +0+0-\frac{h}{\lambda_{\mathrm{H}}}\left\langle {Q}_x^{*}{Q}_z^{*}\right\rangle =0 $$
(B4)
$$ 0-\left\langle {Q}_y^{*}{Q}_y^{*}\right\rangle \frac{U}{L}+0-\frac{h}{\lambda_{\mathrm{H}}}\left\langle {Q}_y^{*}{Q}_x^{*}\right\rangle =0 $$
(B5)
$$ 0+0+\frac{1}{\lambda_{\mathrm{H}}}-\frac{h}{\lambda_{\mathrm{H}}}\left\langle {Q}_y^{*}{Q}_y^{*}\right\rangle =0;\Rightarrow \left(\left\langle {Q}_y^{*}{Q}_y^{*}\right\rangle =\frac{1}{h}\right) $$
(B6)
$$ 0+0+0-\frac{h}{\lambda_{\mathrm{H}}}\left\langle {Q}_y^{*}{Q}_z^{*}\right\rangle =0;\Rightarrow \left(\left\langle {Q}_y^{*}{Q}_z^{*}\right\rangle =0\right) $$
(B7)
$$ 0-\left\langle {Q}_z^{*}{Q}_y^{*}\right\rangle \frac{U}{L}+0-\frac{h}{\lambda_{\mathrm{H}}}\left\langle {Q}_z^{*}{Q}_x^{*}\right\rangle =0 $$
(B8)
$$ 0+0+0-\frac{h}{\lambda_{\mathrm{H}}}\left\langle {Q}_z^{*}{Q}_y^{*}\right\rangle =0;\Rightarrow \left(\left\langle {Q}_z^{*}{Q}_y^{*}\right\rangle =0\right) $$
(B9)
$$ 0+0+\frac{1}{\lambda_{\mathrm{H}}}-\frac{h}{\lambda_{\mathrm{H}}}\left\langle {Q}_z^{*}{Q}_z^{*}\right\rangle =0;\Rightarrow \left(\left\langle {Q}_z^{*}{Q}_z^{*}\right\rangle =\frac{1}{h}\right) $$
(B10)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikh, A. A new closure approximation based on the Cohen/Padé spring law and a novel method for its implementation. Rheol Acta 56, 135–148 (2017). https://doi.org/10.1007/s00397-016-0973-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-016-0973-0

Keywords

Navigation