Skip to main content
Log in

An apparatus for birefringence and extinction angle distributions measurements in cone and plate geometry by polarization imaging method

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

A new apparatus for flow visualization based on Polarization Imaging Method (PIM) is developed. In this method, the polarization imaging camera, which is composed of a photonic crystal and CCD image sensor, is used to measure anisotropy of refractive index tensor. The photonic crystal placed in the front of CCD image sensor works as an assembly of analyzer plates for each of photo detectors of the image sensor, which provides four polarization components of image. By analysis of the polarization imaging data, the spatial distribution of birefringence and extinction angle can be obtained simultaneously. Since birefringence and extinction angle have strong relationship with stress and orientation angle due to Stress-Optical Rule (SOR), their distribution is appropriate to understand non-uniform flow. The advantage of the apparatus was examined by imaging flow of wormlike micellar solution in uniform and non-uniform shear flows. In the uniform shear rate geometry of cone and plate, we successfully obtained spatial distribution of birefringence and extinction angle of flow-induced structure of threadlike micelles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Berret JF (1997) Transient rheology of wormlike micelles. Langmuir 13:2227–2234

    Article  Google Scholar 

  • Britton MM, Callaghan PT (1999) Shear banding instability in wormlike micellar solutions. Eur Phys J B 7:237–249. doi:10.1007/s100510050610

    Article  Google Scholar 

  • Casanellas L, Dimitriou CJ, Ober TJ, McKinley GH (2015) Spatiotemporal dynamics of multiple shear-banding events for viscoelastic micellar fluids in cone-plate shearing flows. J Non-Newtonian Fluid Mech 222:234–247. doi:10.1016/j.jnnfm.2014.12.005

    Article  Google Scholar 

  • Decruppe J, Greffier O, Manneville S, Lerouge S (2006) Local velocity measurements in heterogeneous and time-dependent flows of a micellar solution. Phys Rev E 73:061509

    Article  Google Scholar 

  • Fielding SM, Olmsted PD (2004) Spatiotemporal oscillations and rheochaos in a simple model of shear banding. Phys Rev Lett 92:084502

    Article  Google Scholar 

  • Fischer P, Wheeler EK, Fuller GG (2002) Shear-banding structure orientated in the vorticity direction observed for equimolar micellar solution. Rheol Acta 41:35–44

    Article  Google Scholar 

  • Fukushima E (1999) Nuclear magnetic resonance as a tool to study flow. Annu Rev Fluid Mech 31:95–123. doi:10.1146/annurev.fluid.31.1.95

    Article  Google Scholar 

  • Fuller GG (1995) Optical rheometry of complex fluids. Oxford University Press, New York

    Google Scholar 

  • Ganapathy R, Sood A (2006) Tuning rheochaos by temperature in wormlike micelles. Langmuir 22:11016–11021

    Article  Google Scholar 

  • Hanlon AD, Gibbs SJ, Hall LD, Haycock DE, Frith WJ, Ablett S (1998) Rapid MRI and velocimetry of cylindrical Couette flow. Magn Reson Imaging 16:953–961. doi:10.1016/S0730-725x(98)00089-7

    Article  Google Scholar 

  • Hayward RJ, Tomlinso DJ, Packer KJ (1972) Pulsed field-gradient spin-echo NMR studies of flow in fluids. Mol Phys 23:1083. doi:10.1080/00268977200101061

    Article  Google Scholar 

  • Herle V, Kohlbrecher J, Pfister B, Fischer P, Windhab EJ (2007) Alternating vorticity bands in a solution of wormlike micelles. Phys Rev Lett 99:158302

    Article  Google Scholar 

  • Hu Y, Boltenhagen P, Pine D (1998) Shear thickening in low-concentration solutions of wormlike micelles. I. Direct visualization of transient behavior and phase transitions. J Rheol (1978-present) 42:1185–1208

    Article  Google Scholar 

  • Humbert C, Decruppe JP (1998) Flow birefringence and stress optical law of viscoelastic solutions of cationic surfactants and sodium salicylate. Eur Phys J B 6:511–518. doi:10.1007/s100510050578

    Article  Google Scholar 

  • Inoue T, Nakatsuji R, Watanabe H, Tsujii Y (2008) Effect of surface treatments on viscoelastic measurements of thread-like micellar solutions. Nihon Reoroji Gakkaishi 36:187–190

    Article  Google Scholar 

  • Janeschitz-Kriegl H (1983) Polymer melt rheology and flow birefringence. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Lerouge S, Berret J-F (2009) Shear induced transitions and instabilities in surfactant wormlike micelles. Springer-Verlag, Berlin Heidelberg

    Book  Google Scholar 

  • Manneville S (2008) Recent experimental probes of shear banding. Rheol Acta 47:301–318. doi:10.1007/s00397-007-0246-z

    Article  Google Scholar 

  • Ober TJ, Soulages J, McKinley GH (2011) Spatially resolved quantitative rheo-optics of complex fluids in a microfluidic device. J Rheol 55:1127–1159. doi:10.1122/1.3606593

    Article  Google Scholar 

  • Onuma T, Otani Y (2014) A development of two-dimensional birefringence distribution measurement system with a sampling rate of 1.3 MHz. Opt Commun 315:69–73. doi:10.1016/j.optcom.2013.10.086

    Article  Google Scholar 

  • Raudsepp A, Callaghan PT (2008) A rheo-optical study of shear rate and optical anisotropy in wormlike micelles solutions. Soft Matter 4:784–796. doi:10.1039/b713416a

    Article  Google Scholar 

  • Sedney R (1972) Visualization of boundary-layer flow patterns around proturberances using an optical-surface indicator. Technique Phys Fluids 15:2439–2441. doi:10.1063/1.1693890

    Article  Google Scholar 

  • Sedney R, Kitchens CW, Bush CC (1973) Marriage of optical, tracer, and surface indicator techniques in flow visualization. Survey IEEE T Aero Elec Sys Aes 9:823–823

    Google Scholar 

  • Shikata T, Dahman SJ, Pearson DS (1994) Rheo-optical behavior of wormlike micelles. Langmuir 10:3470

    Article  Google Scholar 

  • Wheeler EK, Fischer P, Fuller GG (1998) Time-periodic flow induced structures and instabilities in a viscoelastic surfactant solution. J Non-Newtonian Fluid Mech 75:193–208

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially supported by a Grant-in-Aid (24350120 and 16H04204) from the ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadashi Inoue.

Appendix

Appendix

Correction method for blur of polarizer array

In order to correct blur of polarizer array, we considered expansion of each transmitted light at the front of each detector as shown in Fig. 2. For such a case, the measured intensity of I(i,j) at position (i,j) could be smeared with the leaked light from the adjacent polarizing plates such as (i ± 1, j ± 1). Let us suppose that the true light intensity, I'(i,j), representing the intensity of light just after passing through the polarizer. We further assume that this light is uniformly expanded from 1 to 1 + 2a in ratio in both x and y directions in the front of each detector. The smeared intensity, I', can be related to the true intensities, I', as follows

$$ \begin{array}{l}I\left(i,j\right)=\left[{a}^2I^{\prime}\left(i\hbox{--} 1,j\hbox{--} 1\right) + aI^{\prime}\left(i\hbox{--} 1,j\right)+{a}^2I^{\prime}\left(i\hbox{--} 1,j+1\right)\right.\hfill \\ {}+\kern-1.90em aI^{\prime}\kern-1.50em \left(i,j\hbox{--} 1\right)\kern-1.90em +\kern-1.90em I^{\prime}\kern-1.80em \left(i,j\right)\kern-2.15em +\kern-1.80em aI^{\prime}\kern-1.80em \left(i,j+1\right)\hfill \\ {} + {a}^2I^{\prime}\left(i+1,j\hbox{--} 1\right)+ aI^{\prime}\left(i+1,j\right)+{a}^2I^{\prime}\left(i+1,j+1\right)\Big]/\ {\left(1+2a\right)}^2\hfill \end{array} $$
(A-1)

By using Eq. (16), we obtain

$$ \begin{array}{l}J\left(n,m,1\right) = \Big[{a}^2J^{\prime}\left(n\hbox{--} 1,m\hbox{--} 1,3\right)+aJ^{\prime}\left(n\hbox{--} 1,m,2\right)+{a}^2J^{\prime}\left(n\hbox{--} 1,m,3\right)\hfill \\ {}+\kern-1.20em a\kern-0.95em J^{\prime}\kern-0.95em \left(n,m\hbox{--} 1,4\right)\kern-0.95em +\kern-0.95em J^{\prime}\kern-0.75em \left(n,m,1\right)\kern-0.75em +\kern-0.75em a\kern-0.75em J^{\prime}\kern-0.75em \left(n,m,4\right)\hfill \\ {}\left. + {a}^2J^{\prime}\left(n,m\hbox{--} 1,3\right)+aJ^{\prime}\left(n,m,2\right)+{a}^2J^{\prime}\left(n,m,3\right)\right]/{\left(1+2a\right)}^2\hfill \end{array} $$
(A-2)

If the pixel size is enough small to the overall image, then the gradient of light could be negligibly small. For such a case, we can assume

$$ J^{\prime}\left(n\hbox{--} 1,m\hbox{--} 1,k\right) = J^{\prime}\left(n,m,k\right) $$
(A-3)

Thus, we obtain

$$ J\left(n,m,1\right) = {\left(1+2a\right)}^{\hbox{--} 2}\left[J^{\prime}\left(n,m,1\right)+2aJ^{\prime}\left(n,m,2\right) + 2aJ^{\prime}\left(n,m,4\right)+4{a}^2J^{\prime}\left(n,m,3\right)\right] $$
(A-4)

This indicates that J(n,m,1) can be related to Jʹ(n,m,k). Similar equations can be derived for other k = 2, 3, and 4. Thus, we obtain

$$ \mathrm{J}\left(n,m\right)=\left(\begin{array}{c}\hfill J\left(n,m,1\right)\hfill \\ {}\hfill J\left(n,m,2\right)\hfill \\ {}\hfill J\left(n,m,3\right)\hfill \\ {}\hfill J\left(n,m,4\right)\hfill \end{array}\right)=\frac{1}{{\left(1+2a\right)}^2}\left(\begin{array}{llll}1\hfill & 2a\hfill & 4{a}^2\hfill & 2a\hfill \\ {}2a\hfill & 1\hfill & 2a\hfill & 4{a}^2\hfill \\ {}4{a}^2\hfill & 2a\hfill & 1\hfill & 2a\hfill \\ {}2a\hfill & 4{a}^2\hfill & 2a\hfill & 1\hfill \end{array}\right)\left(\begin{array}{l}J^{\prime}\left(n,m,1\right)\hfill \\ {}J^{\prime}\left(n,m,2\right)\hfill \\ {}J^{\prime}\left(n,m,3\right)\hfill \\ {}J^{\prime}\left(n,m,4\right)\hfill \end{array}\right)=\mathbf{A}(a){\mathbf{J}}^{\mathbf{\prime}}\left(n,m\right) $$
(A-5)

The desmeared intensity, J′(n,m), can be evaluated from J(n,m) by solving the above simultaneous equations, J′(n,m) = A –1 J(n,m). For our PIC, a was found to be 0.0692.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oba, N., Inoue, T. An apparatus for birefringence and extinction angle distributions measurements in cone and plate geometry by polarization imaging method. Rheol Acta 55, 699–708 (2016). https://doi.org/10.1007/s00397-016-0952-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-016-0952-5

Keywords

Navigation