Skip to main content
Log in

A rheological criterion to determine the percolation threshold in polymer nano-composites

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

In this work, the effect of multi-walled carbon nanotube (CNT) and montmorillonite nanoclay on polymer chain dynamics is investigated around the percolation concentration for systems based on ethylene vinyl acetate (EVA) copolymer. Then, the results obtained are compared with literature data to determine if, regardless of particle characteristics, a universal rheological behavior can be detected at percolation. To do so, rheological analyses are performed under small amplitude oscillatory shear (SAOS), large amplitude oscillatory shear (LAOS), and transient shear step. SAOS data showed that, while the dynamics related to the Rouse relaxation time (τ R) were not significantly influenced, the reptation relaxation time (τ D) was strongly increased by the presence of nanoparticles. In step shear transient tests, the critical shear rate \( \left({\dot{\upgamma}}_{\mathrm{cr}}\right) \) for overshoot appearance was decreased due to chain confinement, and the formation of particle network strongly increased the level of stress overshoot. Particle networks increased significantly the nonlinear parameters (I 3/I 1 and Q 0) obtained under LAOS and quantified by FT-rheology. In all measurements, due to the higher surface area associated to its size and density as well as hollow structure, CNT showed stronger effects compared to clay. Moreover, while the percolation concentration was different for CNT and clay, both systems showed similar behavior at percolation: a 0.5 scaling for G′ indicating a Rouse-dominated behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akcora P, Kumar SK, Moll J, Lewis S, Schadler LS, Li Y, Benicewicz BC, Sandy A, Narayanan S, Ilavsky J, Thiyagarajan P, Colby RH, Douglas JF (2009) “Gel-like” mechanical reinforcement in polymer nanocomposite melts. Macromolecules 43:1003–1010

    Article  Google Scholar 

  • Al-Saleh MH, Sundararaj U (2011) Review of the mechanical properties of carbon nanofiber/polymer composites. Compos Part A 42:2126–2142

    Article  Google Scholar 

  • Alig I, Skipa T, Lellinger D, Pötschke P (2008) Destruction and formation of a carbon nanotube network in polymer melts: rheology and conductivity spectroscopy. Polymer 49:3524–3532

    Article  Google Scholar 

  • Anderson BJ, Zukoski CF (2009) Rheology and microstructure of entangled polymer nanocomposite melts. Macromolecules 42:8370–8384

    Article  Google Scholar 

  • Baxter SC, Robinson CT (2011) Pseudo-percolation: critical volume fractions and mechanical percolation in polymer nanocomposites. Compos Sci Technol 71:1273–1279

    Article  Google Scholar 

  • Bourbigot S, Duquesne S, Jama C (2006) Polymer nanocomposites: how to reach Low flammability? Macromol Symp 233:180–190

    Article  Google Scholar 

  • Chatterjee T, Krishnamoorti R (2008) Steady shear response of carbon nanotube networks dispersed in poly(ethylene oxide). Macromolecules 41:5333–5338

    Article  Google Scholar 

  • Chen DTN, Chen K, Hough LA, Islam MF, Yodh AG (2010) Rheology of carbon nanotube networks during gelation. Macromolecules 43:2048–2053

    Article  Google Scholar 

  • Crosby AJ, Lee JY (2007) Polymer nanocomposites: the “nano” effect on mechanical properties. Polym Rev 47:217–229

    Article  Google Scholar 

  • Dealy JM, Larson RG (2006) Structure and rheology of molten polymers: from structure to flow behavior and back again. Hanser Gardner Publications, Ohio

    Book  Google Scholar 

  • Deepak Ahirwal, Humberto Palza, Guy Schlatter, Manfred Wilhelm (2014) New way to characterize the percolation threshold of polyethylene and carbon nanotube polymer composites using Fourier Transform (FT)-Rheology.

  • Doi M, Edwards SF (1989) The theory of polymer dynamics. Clarendon, New York

    Google Scholar 

  • Du F, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI (2004) Nanotube networks in polymer nanocomposites: rheology and electrical conductivity. Macromolecules 37:9048–9055

    Article  Google Scholar 

  • Dykes LMC, Torkelson JM, Burghardt WR (2012) Shear-induced orientation in well-exfoliated polystyrene/clay nanocomposites. Macromolecules 45:1622–1630

    Article  Google Scholar 

  • Ghanbari A, Heuzey M-C, Carreau P, Ton-That M-T (2013) Morphological and rheological properties of PET/clay nanocomposites. Rheol Acta 52:59–74

    Article  Google Scholar 

  • Han Z, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci 36:914–944

    Article  Google Scholar 

  • Hassanabadi H, Rodrigue D (2012) Relationships between linear and nonlinear shear response of polymer nano-composites. Rheol Acta 51:991–1005

    Article  Google Scholar 

  • Hassanabadi HM, Abbasi M, Wilhelm M, Rodrigue D (2013) Validity of the modified molecular stress function theory to predict the rheological properties of polymer nanocomposites. J Rheol 57:881–899

    Article  Google Scholar 

  • Hassanabadi HM, Rodrigue D (2013) Effect of nano-particles on flow and recovery of polymer nano-composites in the melt state. Int Polym Proc 28:151–158

    Article  Google Scholar 

  • Hassanabadi HM, Rodrigue D (2014) Effect of particle size and shape on the reinforcing efficiency of nanoparticles in polymer nanocomposites. Macromol Mater Eng. doi:10.1002/mame.201300442

  • Heinrich G, Klüppel M, Vilgis TA (2002) Reinforcement of elastomers. Curr Opin Solid State Mater Sci 6:195–203

    Article  Google Scholar 

  • Hornsby P (1999) Rheology, Compounding and Processing of Filled Thermoplastics Mineral Fillers in Thermoplastics I. In: Jancar J, Fekete E, Hornsby P, Jancar J, Pukánszky B, Rothon R (eds), vol 139. Springer Berlin / Heidelberg, pp 155–217

  • Huegun A, Fernández M, Muñoz ME, Santamaría A (2012) Rheological properties and electrical conductivity of irradiated MWCNT/PP nanocomposites. Compos Sci Technol 72:1602–1607

    Article  Google Scholar 

  • Hyun K, Kim W (2011) A new non-linear parameter Q from FT-Rheology under nonlinear dynamic oscillatory shear for polymer melts system. Korea-Aust Rheol J 23:227–235

    Article  Google Scholar 

  • Hyun K, Wilhelm M (2008) Establishing a new mechanical nonlinear coefficient Q from FT-rheology: first investigation of entangled linear and comb polymer model systems. Macromolecules 42:411–422

    Article  Google Scholar 

  • Hyun K, Wilhelm M, Klein CO, Cho KS, Nam JG, Ahn KH, Lee SJ, Ewoldt RH, McKinley GH (2011) A review of nonlinear oscillatory shear tests: analysis and application of large amplitude oscillatory shear (LAOS). Prog Polym Sci 36:1697–1753

    Article  Google Scholar 

  • Jancar J (2008) Review of the role of the interphase in the control of composite performance on micro- and nano-length scales. J Mater Sci 43:6747–6757

    Article  Google Scholar 

  • Jancar J, Douglas JF, Starr FW, Kumar SK, Cassagnau P, Lesser AJ, Sternstein SS, Buehler MJ (2010) Current issues in research on structure–property relationships in polymer nanocomposites. Polymer 51:3321–3343

    Article  Google Scholar 

  • Jouault N, Vallat P, Dalmas F, Said S, Jestin J, Boué F (2009) Well-dispersed fractal aggregates as filler in polymer–silica nanocomposites: long-range effects in rheology. Macromolecules 42:2031–2040

    Article  Google Scholar 

  • Kabanemi KK, Hétu J-F (2013) Reptation model for the dynamics and rheology of particle reinforced polymer chainsmodeling and prediction of polymer nanocomposite properties. Wiley-VCH Verlag GmbH & Co. KGaA, pp 63–94

  • Kayatin MJ, Davis VA (2009) Viscoelasticity and shear stability of single-walled carbon nanotube/unsaturated polyester resin dispersions. Macromolecules 42:6624–6632

    Article  Google Scholar 

  • Kempf M, Ahirwal D, Cziep M, Wilhelm M (2013) Synthesis and linear and nonlinear melt rheology of well-defined comb architectures of PS and PpMS with a low and controlled degree of long-chain branching. Macromolecules 46:4978–4994

    Article  Google Scholar 

  • Kota AK, Cipriano BH, Duesterberg MK, Gershon AL, Powell D, Raghavan SR, Bruck HA (2007) Electrical and rheological percolation in polystyrene/MWCNT nanocomposites. Macromolecules 40:7400–7406

    Article  Google Scholar 

  • Krishnamoorti R, Giannelis EP (1997) Rheology of End-tethered polymer layered silicate nanocomposites. Macromolecules 30:4097–4102

    Article  Google Scholar 

  • Leblanc JL (2002) Rubber–filler interactions and rheological properties in filled compounds. Prog Polym Sci 27:627–687

    Article  Google Scholar 

  • Lee J-I, Yang S-B, Jung H-T (2009) Carbon nanotubes–polypropylene nanocomposites for electrostatic discharge applications. Macromolecules 42:8328–8334

    Article  Google Scholar 

  • Lehman JH, Terrones M, Mansfield E, Hurst KE, Meunier V (2011) Evaluating the characteristics of multiwall carbon nanotubes. Carbon 49:2581–2602

    Article  Google Scholar 

  • Letwimolnun W, Vergnes B, Ausias G, Carreau PJ (2007) Stress overshoots of organoclay nanocomposites in transient shear flow. J Non-Newtonian Fluid Mech 141:167–179

    Article  Google Scholar 

  • Likhtman AE, Milner ST, McLeish TCB (2000) Microscopic theory for the fast flow of polymer melts. Phys Rev Lett 85:4550–4553

    Article  Google Scholar 

  • Lim HT, Ahn KH, Hong JS, Hyun K (2013) Nonlinear viscoelasticity of polymer nanocomposites under large amplitude oscillatory shear flow. J Rheol 57:767–789

    Article  Google Scholar 

  • Mahi H, Rodrigue D (2012) Linear and non-linear viscoelastic properties of ethylene vinyl acetate/nano-crystalline cellulose composites. Rheol Acta 51:127–142

    Article  Google Scholar 

  • Manitiu M, Horsch S, Gulari E, Kannan RM (2009) Role of polymer-clay interactions and nano-clay dispersion on the viscoelastic response of supercritical CO2 dispersed polyvinylmethylether (PVME)-Clay nanocomposites. Polymer 50:3786–3796

    Article  Google Scholar 

  • Marrucci G, Grizzuti N (1988) Fast flow of concentrated polymers: predictions of the Tube model on chain stretching. Gazz Chim Ital 118:179–185

    Google Scholar 

  • McLeish TCB, Larson RG (1998) Molecular constitutive equations for a class of branched polymers: the pom-pom polymer. J Rheol 42:81–110

    Article  Google Scholar 

  • Meins T, Dingenouts N, Kübel J, Wilhelm M (2012) In situ rheodielectric, ex situ 2D-SAXS, and fourier transform rheology investigations of the shear-induced alignment of poly(styrene-b-1,4-isoprene) diblock copolymer melts. Macromolecules 45:7206–7219

    Article  Google Scholar 

  • Mobuchon C, Carreau PJ, Heuzey M-C (2009) Structural analysis of non-aqueous layered silicate suspensions subjected to shear flow. J Rheol 53:1025–1048

    Article  Google Scholar 

  • Mohraz A, Solomon MJ (2005) Orientation and rupture of fractal colloidal gels during start-up of steady shear flow. J Rheol 49:657–681

    Article  Google Scholar 

  • Mu M, Winey KI (2007) Improved load transfer in nanotube/polymer composites with increased polymer molecular weight. J Phys Chem C 111:17923–17927

    Article  Google Scholar 

  • Nan C-W, Shen Y, Ma J (2010) Physical properties of composites near percolation. Annu Rev Mater Res 40:131–151

    Article  Google Scholar 

  • Neidhöfer T, Sioula S, Hadjichristidis N, Wilhelm M (2004) Distinguishing linear from star-branched polystyrene solutions with fourier-transform rheology. Macromol Rapid Commun 25:1921–1926

    Article  Google Scholar 

  • Nusser K, Neueder S, Schneider GJ, Meyer M, Pyckhout-Hintzen W, Willner L, Radulescu A, Richter D (2010) Conformations of silica−poly(ethylene−propylene) nanocomposites. Macromolecules 43:9837–9847

    Article  Google Scholar 

  • Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204

    Article  Google Scholar 

  • Pavlidou S, Papaspyrides CD (2008) A review on polymer–layered silicate nanocomposites. Prog Polym Sci 33:1119–1198

    Article  Google Scholar 

  • Pearson D, Herbolzheimer E, Grizzuti N, Marrucci G (1991) Transient behavior of entangled polymers at high shear rates. J Polym Sci B Polym Phys 29:1589–1597

    Article  Google Scholar 

  • Penu C, Hu G-H, Fernandez A, Marchal P, Choplin L (2012) Rheological and electrical percolation thresholds of carbon nanotube/polymer nanocomposites. Polym Eng Sci 52:2173–2181

    Article  Google Scholar 

  • Philippe C (2003) Payne effect and shear elasticity of silica-filled polymers in concentrated solutions and in molten state. Polymer 44:2455–2462

    Article  Google Scholar 

  • Piau J-M, Dorget M, Palierne J-F, Pouchelon A (1999) Shear elasticity and yield stress of silica–silicone physical gels: fractal approach. J Rheol 43:305–314

    Article  Google Scholar 

  • Picu RC, Rakshit A (2007) Dynamics of free chains in polymer nanocomposites. J Chem Phys 126:144909

    Article  Google Scholar 

  • Rouse PE (1953) A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J Chem Phys 21:1272–1280

  • Takahashi S, Goldberg HA, Feeney CA, Karim DP, Farrell M, O’Leary K, Paul DR (2006) Gas barrier properties of butyl rubber/vermiculite nanocomposite coatings. Polymer 47:3083–3093

    Article  Google Scholar 

  • Utracki LA, Sepehr MM, Carreau PJ (2010) Rheology of polymers with nanofillers. In: Utracki LAJA (ed) Polymer physics: from suspensions to nanocomposites and beyond. Wiley, Hoboken, pp 639–708

    Chapter  Google Scholar 

  • Vermant J, Ceccia S, Dolgovskij MK, Maffettone PL, Macosko CW (2007) Quantifying dispersion of layered nanocomposites via melt rheology. J Rheol 51:429–450

    Article  Google Scholar 

  • Wagner MH, Rolon-Garrido VH, Hyun K, Wilhelm M (2011) Analysis of medium amplitude oscillatory shear data of entangled linear and model comb polymers. J Rheol 55:495–516

    Article  Google Scholar 

  • Whittle M, Dickinson E (1997) Stress overshoot in a model particle gel. J Chem Phys 107:10191–10200

    Article  Google Scholar 

  • Wilhelm M (2002) Fourier-transform rheology. Macromol Mater Eng 287:83–105

    Article  Google Scholar 

  • Wilhelm M (2011) New methods for the rheological characterization of materials. Chem Eng Process 50:486–488

    Article  Google Scholar 

  • Winter H, Mours M (1997) Rheology of Polymers Near Liquid–solid Transitions Neutron Spin Echo Spectroscopy Viscoelasticity Rheology, vol 134. Springer Berlin, Heidelberg, pp 165–234

    Book  Google Scholar 

  • Winter HH, Chambon F (1986) Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J Rheol 30:367–382

    Article  Google Scholar 

  • Woo RSC, Zhu H, Chow MMK, Leung CKY, Kim J-K (2008) Barrier performance of silane–clay nanocomposite coatings on concrete structure. Compos Sci Technol 68:2828–2836

    Article  Google Scholar 

  • Xu D-H, Wang Z-G, Douglas JF (2008) Influence of carbon nanotube aspect ratio on normal stress differences in isotactic polypropylene nanocomposite melts. Macromolecules 41:815–825

    Article  Google Scholar 

  • Yuan L, Wu D, Zhang M, Zhou W, Lin D (2011) Rheological percolation behavior and isothermal crystallization of poly(butyene succinte)/carbon nanotube composites. Ind Eng Chem Res 50:14186–14192

    Article  Google Scholar 

  • Zhang Q, Archer LA (2002) Poly(ethylene oxide)/silica nanocomposites: structure and rheology. Langmuir 18:10435–10442

    Article  Google Scholar 

  • Zhang Q, Fang F, Zhao X, Li Y, Zhu M, Chen D (2008) Use of dynamic rheological behavior to estimate the dispersion of carbon nanotubes in carbon nanotube/polymer composites. J Phys Chem B 112:12606–12611

    Article  Google Scholar 

  • Zhang Q, Rastogi S, Chen D, Lippits D, Lemstra PJ (2006) Low percolation threshold in single-walled carbon nanotube/high density polyethylene composites prepared by melt processing technique. Carbon 44:778–785

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of Natural Sciences and Engineering Research Council (NSERC) of Canada and the Quebec Ministry for Economic Development, Innovation and Exportation (MDEIE) for this work. Financial support from the Arboranano center of excellence is also appreciated. Special thanks go to Southern Clay Products Inc. for nanoclay samples and CNano for carbon nanotube samples. Also, many thanks go to the group of Prof. Manfred Wilhelm at Karlsruhe institute of technology (KIT) during a student exchange period sponsored by Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Rodrigue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanabadi, H.M., Wilhelm, M. & Rodrigue, D. A rheological criterion to determine the percolation threshold in polymer nano-composites. Rheol Acta 53, 869–882 (2014). https://doi.org/10.1007/s00397-014-0804-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-014-0804-0

Keywords

Navigation