Skip to main content
Log in

Relationships between linear and nonlinear shear response of polymer nano-composites

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Rheological analysis was used to understand the structure–property relations of polymer nano-composites based on ethylene vinyl acetate. Two geometrically different nano-particles (sphere of CaCO3 and platelet of montmorillonite) having the same energetic attractions with ethylene vinyl acetate were studied for concentrations between 2.5 and 15 wt%. Three phenomena were studied: the appearance of a solid-like behavior in the linear viscoelastic domain, the limits of linear viscoelasticity, and the presence of stress overshoot in step shear tests. In particular, stress overshoot was investigated based on the tube concept of polymeric chains. Also, differences related to nano-particle geometry (platelet vs. spherical) were investigated based on a filler-network mechanism. Due to higher physical contacting probability, platelet particles can better interact and create a network structure, which dominates the rheological response. On the other hand, although spherical particles can limit the motion of polymeric chains under flow, a strong physical network was not formed. For platelets, scaling behavior was well described by fractal model which considers direct aggregation, and such scaling was not observed for spherical particles. The filler-network mechanism was validated by image analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akcora P, Kumar SK, Garciía Sakai V, Li Y, Benicewicz BC, Schadler LS (2010) Segmental dynamics in PMMA-grafted nanoparticle composites. Macromolecules 43:8275–8281

    Article  CAS  Google Scholar 

  • Akcora P, Kumar SK, Moll J, Lewis S, Schadler LS, Li Y, Benicewicz BC, Sandy A, Narayanan S, Ilavsky J, Thiyagarajan P, Colby RH, Douglas JF (2009) “Gel-like” mechanical reinforcement in polymer nanocomposite melts. Macromolecules 43:1003–1010

    Article  Google Scholar 

  • Anderson BJ, Zukoski CF (2009) Rheology and microstructure of entangled polymer nanocomposite melts. Macromolecules 42:8370–8384

    Article  CAS  Google Scholar 

  • Anderson BJ, Zukoski CF (2010) Rheology and microstructure of polymer nanocomposite melts: variation of polymer segment-surface interaction. Langmuir 26:8709–8720

    Article  CAS  Google Scholar 

  • Bogoslovov RB, Roland CM, Ellis AR, Randall AM, Robertson CG (2008) Effect of silica nanoparticles on the local segmental dynamics in poly(vinyl acetate). Macromolecules 41:1289–1296

    Article  CAS  Google Scholar 

  • Cassagnau P (2003) Payne effect and shear elasticity of silica-filled polymers in concentrated solutions and in molten state. Polymer 44:2455–2462

    Article  CAS  Google Scholar 

  • Cassagnau P (2008) Melt rheology of organoclay and fumed silica nanocomposites. Polymer 49:2183–2196

    Article  CAS  Google Scholar 

  • Chatterjee T, Krishnamoorti R (2008) Steady shear response of carbon nanotube networks dispersed in poly(ethylene oxide). Macromolecules 41:5333–5338

    Article  CAS  Google Scholar 

  • Chen B, Evans JRG (2006) Nominal and effective volume fractions in polymer–clay nanocomposites. Macromolecules 39:1790–1796

    Article  CAS  Google Scholar 

  • Chen DTN, Chen K, Hough LA, Islam MF, Yodh AG (2010) Rheology of carbon nanotube networks during gelation. Macromolecules 43:2048–2053

    Article  CAS  Google Scholar 

  • Chevigny C, Dalmas F, Di Cola E, Gigmes D, Bertin D, Boué Fo, Jestin J (2010) Polymer-grafted-nanoparticles nanocomposites: dispersion, grafted chain conformation, and rheological behavior. Macromolecules 44:122–133

    Article  Google Scholar 

  • Ci L, Suhr J, Pushparaj V, Zhang X, Ajayan PM (2008) Continuous carbon nanotube reinforced composites. Nano Lett 8:2762–2766

    Article  CAS  Google Scholar 

  • Doi M, Edwards SF (1989) The theory of polymer dynamics. Clarendon, New York

    Google Scholar 

  • Du F, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI (2004) Nanotube networks in polymer nanocomposites: rheology and electrical conductivity. Macromolecules 37:9048–9055

    Article  CAS  Google Scholar 

  • Durmus A, Kasgoz A, Macosko CW (2007) Linear low density polyethylene (LLDPE)/clay nanocomposites. Part I: structural characterization and quantifying clay dispersion by melt rheology. Polymer 48:4492–4502

    Article  CAS  Google Scholar 

  • Dykes LMC, Torkelson JM, Burghardt WR (2012) Shear-induced orientation in well-exfoliated polystyrene/clay nanocomposites. Macromolecules 45:1622–1630

    Article  CAS  Google Scholar 

  • Galgali G, Ramesh C, Lele A (2001) A rheological study on the kinetics of hybrid formation in polypropylene nanocomposites. Macromolecules 34:852–858

    Article  CAS  Google Scholar 

  • Goel V, Chatterjee T, Bombalski L, Yurekli K, Matyjaszewski K, Krishnamoorti R (2006) Viscoelastic properties of silica-grafted poly(styrene–acrylonitrile) nanocomposites. J Polym Sci, Part B, Polym Phys 44:2014–2023

    Article  CAS  Google Scholar 

  • Groot RD, Agterof WGM (1995) Dynamic viscoelastic modulus of associative polymer networks: off-lattice simulations, theory and comparison to experiments. Macromolecules 28:6284–6295

    Article  CAS  Google Scholar 

  • Harton SE, Kumar SK, Yang H, Koga T, Hicks K, Lee H, Mijovic J, Liu M, Vallery RS, Gidley DW (2010) Immobilized polymer layers on spherical nanoparticles. Macromolecules 43:3415–3421

    Article  CAS  Google Scholar 

  • Heinrich G, Klüppel M (2002) Recent advances in the theory of filler networking in elastomers. In: Arora M (ed) Filled elastomers drug delivery systems. Springer, Berlin, pp 1–44

    Chapter  Google Scholar 

  • Inoue T, Uematsu T, Yamashita Y, Osaki K (2002a) Significance of the longest rouse relaxation time in the stress relaxation process at large deformation of entangled polymer solutions. Macromolecules 35:4718–4724

    Article  CAS  Google Scholar 

  • Inoue T, Yamashita Y, Osaki K (2002b) Viscoelasticity of an entangled polymer solution with special attention on a characteristic time for nonlinear behavior. Macromolecules 35:1770–1775

    Article  CAS  Google Scholar 

  • Isichenko MB (1992) Percolation, statistical topography, and transport in random media. Rev Mod Phys 64:961–1043

    Article  Google Scholar 

  • Jancar J, Douglas JF, Starr FW, Kumar SK, Cassagnau P, Lesser AJ, Sternstein SS, Buehler MJ (2010) Current issues in research on structure–property relationships in polymer nanocomposites. Polymer 51:3321–3343

    Article  CAS  Google Scholar 

  • Jouault N, Vallat P, Dalmas F, Said Sr, Jestin J, Bouè Fo (2009) Well-dispersed fractal aggregates as filler in polymer-silica nanocomposites: long-range effects in rheology. Macromolecules 42:2031–2040

    Article  CAS  Google Scholar 

  • Kalfus J, Jancar J (2007) Immobilization of polyvinylacetate macromolecules on hydroxyapatite nanoparticles. Polymer 48:3935–3937

    Article  CAS  Google Scholar 

  • Kalfus J, Jancar J (2008) Reinforcing mechanisms in amorphous polymer nano-composites. Compos Sci Technol 68:3444–3447

    Article  CAS  Google Scholar 

  • Koo JH (2006) Polymer nanocomposites—processing, characterization, and applications. McGraw-Hill, New York

    Google Scholar 

  • Krishnamoorti R, Giannelis EP (1997) Rheology of end-tethered polymer layered silicate nanocomposites. Macromolecules 30:4097–4102

    Article  CAS  Google Scholar 

  • Krishnamoorti R, Yurekli K (2001) Rheology of polymer layered silicate nanocomposites. Curr Opin Colloid Interface Sci 6:464–470

    Article  CAS  Google Scholar 

  • Lee KM, Han CD (2003) Rheology of organoclay nanocomposites: effects of polymer matrix/organoclay compatibility and the gallery distance of organoclay. Macromolecules 36:7165–7178

    Article  CAS  Google Scholar 

  • Letwimolnun W, Vergnes B, Ausias G, Carreau PJ (2007) Stress overshoots of organoclay nanocomposites in transient shear flow. J Non-Newton Fluid Mech 141:167–179

    Article  CAS  Google Scholar 

  • Lin CW, Huang LC, Ma CCM, Yang ACM, Lin CJ, Lin LJ (2008) Nanoplastic flows of glassy polymer chains interacting with multiwalled carbon nanotubes in nanocomposites. Macromolecules 41:4978–4988

    Article  CAS  Google Scholar 

  • Litvinov VM, Spiess HW (1991) 2H NMR study of molecular motions in polydimethylsiloxane and its mixtures with aerosils. Makromol Chem 192:3005–3019

    Article  CAS  Google Scholar 

  • Mahi H, Rodrigue D (2012) Linear and non-linear viscoelastic properties of ethylene vinyl acetate/nano-crystalline cellulose composites. Rheol Acta 51:127–142

    Article  CAS  Google Scholar 

  • Manitiu M, Horsch S, Gulari E, Kannan RM (2009) Role of polymer-clay interactions and nano-clay dispersion on the viscoelastic response of supercritical CO2 dispersed polyvinylmethylether (PVME)-clay nanocomposites. Polymer 50:3786–3796

    Article  CAS  Google Scholar 

  • Mansoutre S, Colombet P, Van Damme H (1999) Water retention and granular rheological behavior of fresh C3S paste as a function of concentration. Cement Concrete Rec 29:1441–1453

    Article  CAS  Google Scholar 

  • Mobuchon C, Carreau P, Heuzey M-C (2007) Effect of flow history on the structure of a non-polar polymer/clay nanocomposite model system. Rheol Acta 46:1045–1056

    Article  CAS  Google Scholar 

  • Mohraz A, Solomon MJ (2005) Orientation and rupture of fractal colloidal gels during start-up of steady shear flow. J Rheol 49:657–681

    Article  CAS  Google Scholar 

  • Mu M, Winey KI (2007) Improved load transfer in nanotube/polymer composites with increased polymer molecular weight. J Phys Chem C 111:17923–17927

    Article  CAS  Google Scholar 

  • Muthukumar M (1989) Screening effect on viscoelasticity near the gel point. Macromolecules 22:4656–4658

    Article  CAS  Google Scholar 

  • Nagase Y, Okada K (1986) Heterogeneous behavior after yielding of solid suspensions. J Rheol 30:1123–1142

    Article  CAS  Google Scholar 

  • Nusser K, Schneider GJ, Richter D (2011) Microscopic origin of the terminal relaxation time in polymer nanocomposites: an experimental precedent. Soft Matter 7:7988–7991

    Article  CAS  Google Scholar 

  • Osaki K, Inoue T, Uematsu T, Yamashita Y (2001) Evaluation methods of the longest Rouse relaxation time of an entangled polymer in a semidilute solution. J Polym Sci, Part B, Polym Phys 39:1704–1712

    Article  CAS  Google Scholar 

  • Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204

    Article  CAS  Google Scholar 

  • Pearson D, Herbolzheimer E, Grizzuti N, Marrucci G (1991) Transient behavior of entangled polymers at high shear rates. J Polym Sci, Part B, Polym Phys 29:1589–1597

    Article  CAS  Google Scholar 

  • Prince E, Rouse J (1953) A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J Chem Phys 21:1272–1280

    Article  Google Scholar 

  • Pujari S, Rahatekar SS, Gilman JW, Koziol KK, Windle AH, Burghardt WR (2009) Orientation dynamics in multiwalled carbon nanotube dispersions under shear flow. J Chem Phys 130:214903

    Article  Google Scholar 

  • Ren J, Silva AS, Krishnamoorti R (2000) Linear viscoelasticity of disordered polystyrene-polyisoprene block copolymer based layered-silicate nanocomposites. Macromolecules 33:3739–3746

    Article  CAS  Google Scholar 

  • Ren J, Krishnamoorti R (2003) Nonlinear viscoelastic properties of layered-silicate-based intercalated nanocomposites. Macromolecules 36:4443–4451

    Article  CAS  Google Scholar 

  • Robertson CG, Roland CM (2008) Glass transition and interfacial segmental dynamics in polymer-particle composites. Rubber Chem Technol 81:506–522

    Article  CAS  Google Scholar 

  • Rueb CJ, Zukoski CF (1997) Viscoelastic properties of colloidal gels. J Rheol 41:197–218

    Article  CAS  Google Scholar 

  • Sarvestani AS (2008) Modeling the solid-like behavior of entangled polymer nanocomposites at low frequency regimes. Eur Polym J 44:263–269

    Article  CAS  Google Scholar 

  • Shih W-H, Shih WY, Kim S-I, Liu J, Aksay IA (1990) Scaling behavior of the elastic properties of colloidal gels. Phys Rev A 42:4772–4779

    Article  CAS  Google Scholar 

  • Solomon MJ, Almusallam AS, Seefeldt KF, Somwangthanaroj A, Varadan P (2001) Rheology of polypropylene/clay hybrid materials. Macromolecules 34:1864–1872

    Article  CAS  Google Scholar 

  • Song Y, Zheng Q (2010) Linear viscoelasticity of polymer melts filled with nano-sized fillers. Polymer 51:3262–3268

    Article  CAS  Google Scholar 

  • Sternstein SS, Zhu A-J (2002) Reinforcement mechanism of nanofilled polymer melts as elucidated by nonlinear viscoelastic behavior. Macromolecules 35:7262–7273

    Article  CAS  Google Scholar 

  • Utracki LA, Sepehr M, Carreau PJ (2010) Rheology of polymers with nanofillers. In: Utracki LA, Jamieson AM (eds) Polymer physics: from suspensions to nanocomposites and beyond. Wiley, Hoboken, pp 639–708

    Chapter  Google Scholar 

  • Vermant J, Ceccia S, Dolgovskij MK, Maffettone PL, Macosko CW (2007) Quantifying dispersion of layered nanocomposites via melt rheology. J Rheol 51:429–450

    Article  CAS  Google Scholar 

  • Whittle M, Dickinson E (1997) Stress overshoot in a model particle gel. J Chem Phys 107:10191–10200

    Article  CAS  Google Scholar 

  • Winter HH, Chambon F (1986) Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J Rheol 30:367–382

    Article  CAS  Google Scholar 

  • Yziquel F, Carreau PJ, Tanguy PA (1999) Non-linear viscoelastic behavior of fumed silica suspensions. Rheol Acta 38:14–25

    Article  CAS  Google Scholar 

  • Zhang Q, Archer LA (2002) Poly(ethylene oxide)/silica nanocomposites: structure and rheology. Langmuir 18:10435–10442

    Article  CAS  Google Scholar 

  • Zheng X, Xu Q (2010) Comparison study of morphology and crystallization behavior of polyethylene and poly(ethylene oxide) on single-walled carbon nanotubes. J Phys Chem 114:9435–9444

    Article  CAS  Google Scholar 

  • Zhu Z, Thompson T, Wang S-Q, von Meerwall ED, Halasa A (2005) Investigating linear and nonlinear viscoelastic behavior using model silica-particle-filled polybutadiene. Macromolecules 38:8816–8824

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of Natural Sciences and Research Council of Canada and the Quebec Ministry for Economic Development, Innovation and Exportation for this work. Financial support from the ArboraNano Center of Excellence is also acknowledged. Special thanks go to Specialty Minerals, Inc. for the CaCO3 and Southern Clay Products, Inc. for the nano-clay samples. Finally, Prof. Maria Cornelia Iliuta and Mrs. Sanaz Mosagedh Sedghi are acknowledged for the contact angle measurements.

Author information

Authors and Affiliations

Authors

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(TIF 5.88 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassanabadi, H.M., Rodrigue, D. Relationships between linear and nonlinear shear response of polymer nano-composites. Rheol Acta 51, 991–1005 (2012). https://doi.org/10.1007/s00397-012-0655-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-012-0655-5

Keywords

Navigation