Skip to main content
Log in

Effect of surface modifier on flow properties of epoxy suspensions containing model plate-like nanoparticles

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The influence of inter-particle interaction on the rheology of an uncured epoxy containing model α-zirconium phosphate (ZrP) nanoplatelets with aspect ratio of 160 is reported. Epoxy suspensions containing nanoplatelets exfoliated with tetra-n-butyl ammonium hydroxide (TBA), a low molecular weight quaternary ammonium cation, show short-range repulsive potential with weak elastic response at low concentration. At semi-dilute concentrations, the suspensions are solid-like at intermediate frequency and transition to viscous flow for time scales longer than the rotary diffusion process. The weak elasticity at intermediate frequency is attributed to the effect of Brownian motion on the rotational motion of the isolated plates. Suspensions containing nanoplatelets exfoliated with hydrophilic polyetheramine oligomers show similar behaviour to the ZrP-TBA system, but shifted to lower concentration. The rheological behaviour is attributed to steric stabilization of the nanoplatelets by extended oligomer brushes with short-range repulsive interactions. For suspensions containing nanoplatelets exfoliated with hydrophobic polyetheramines with shorter length, there is evidence for elastic response on local length scales and the flow behaviour shows strong history and temperature dependence. Rheological signatures associated with equilibrium nanoplatelet dispersions with repulsive interactions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alberti G, Costantino U (1982) Intercalation chemistry. Academic, New York

    Google Scholar 

  • Anczurowski E, Mason S (1967) The kinetics of flowing dispersions: III. Equilibrium orientations of rods and discs (experimental). J Coll Interf Sci 23:533–546. doi:10.1016/0021-9797(67)90200-7

    Article  Google Scholar 

  • Batchelor G (1970) The stress system in a suspension of force-free particles. J Fluid Mech 41:545–570. doi:10.1017/S0022112070000745

    Article  Google Scholar 

  • Batchelor G (1974) Transport properties of two-phase materials with random structure. Annu Rev Fluid Mech 6:227–255. doi:10.1146/annurev.fl.06.010174.001303

    Article  Google Scholar 

  • Bestaoui N, Spurr NA, Clearfield A (2006) Intercalation of polyether amines into α-zirconium phosphate. J Mater Chem 16:759–764. doi:10.1039/B511351B

    Article  Google Scholar 

  • Boo W, Sun L, Liu J et al (2007a) Morphology and mechanical behavior of exfoliated epoxy/α-zirconium phosphate nanocomposites. Compos Sci Technol 67:262–269. doi:10.1016/j.compscitech.2006.08.012

    Article  Google Scholar 

  • Boo WJ, Sun L, Liu J et al (2007b) Effect of nanoplatelet dispersion on mechanical behavior of polymer nanocomposites. J Polym Sci Pol Phys 45:1459–1469. doi:10.1002/polb.21163

    Article  Google Scholar 

  • Boo WJ, Sun L, Warren G et al (2007c) Effect of nanoplatelet aspect ratio on mechanical properties of epoxy nanocomposites. Polymer 48:1075–1082. doi:10.1016/j.polymer.2006.12.042

    Article  Google Scholar 

  • Brady JF (1996) Model hard-sphere dispersions: statistical mechanical theory, simulations, and experiments. Curr Opin Colloid Interfaces Sci 1:472–480. doi:10.1016/S1359-0294(96)80115-4

    Article  Google Scholar 

  • Brenner H (1974) Rheology of a dilute suspension of axisymmetric Brownian particles. Int J Multiphase Flow 1:195–341. doi:10.1016/0301-9322(74)90018-4

    Article  Google Scholar 

  • Bretherton FP (1962) The motion of rigid particles in a shear flow at low reynolds number. J Fluid Mech 14:284–304. doi:10.1017/S002211206200124X

    Article  Google Scholar 

  • Clearfield A, Smith GD (1969) Crystallography and structure of α-zirconium bis (monohydrogen orthophosphate) monohydrate. Inorg Chem 8:431–436. doi:10.1021/ic50073a005

    Article  Google Scholar 

  • Clearfield A, Stynes JA (1964) The preparation of crystalline zirconium phosphate and some observations on its ion exchange behaviour. J Inorg Nucl Chem 26:117–129. doi:10.1016/0022-1902(64)80238-4

    Article  Google Scholar 

  • Clearfield A, Tindwa RM (1979) On the mechanism of ion exchange in zirconium phosphates—XXI intercalation of amines by α-zirconium phosphate. J Inorg Nucl Chem 41:871–878. doi:10.1016/0022-1902(79)80283-3

    Article  Google Scholar 

  • Dal pont K, Gérard J, Espuche E (2012) Modification of α-ZrP nanofillers by amines of different chain length: consequences on the morphology and mechanical properties of styrene butadiene rubber based nanocomposites. Eur Polym J 48:217–227. doi:10.1016/j.eurpolymj.2011.11.006

    Article  Google Scholar 

  • Dealy J, Plazek D (2009) Time-temperature superposition—a users guide. Rheol Bull 78:16–31

    Google Scholar 

  • Durand-Gasselin C, Capelot M, Sanson N, Lequeux N (2010) Tunable and reversible aggregation of poly (ethylene oxide-st-propylene oxide) grafted gold nanoparticles. Langmuir 26:12321–12329. doi:10.1021/la1015669

    Article  Google Scholar 

  • Giannelis EP, Krishnamoorti R, Manias E (1999) Polymer-silicate nanocomposites: model systems for confined polymers and polymer brushes. Adv Polym Sci 118:108–147. doi:10.1007/3-540-69711-X_3

    Google Scholar 

  • Hanwell MD, Curtis DE, Lonie DC et al (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminformatics 4:1–17. doi:10.1186/1758-2946-4-17

    Article  Google Scholar 

  • Israelachvili J (2011) Intermolecular and surface forces. Academic, Burlington

    Google Scholar 

  • Jeffery GB (1922) The motion of ellipsoidal particles immersed in a viscous fluid. P R Soc Lond A Math 102:161–179

    Article  Google Scholar 

  • Kaschak DM, Johnson SA, Hooks DE et al (1998) Chemistry on the edge: A microscopic analysis of the intercalation, exfoliation, edge functionalization, and monolayer surface tiling reactions of α-zirconium phosphate. J Am Chem Soc 120:10887–10894. doi:10.1021/ja9818710

    Article  Google Scholar 

  • Kirkwood JG, Auer PL (1951) The visco-elastic properties of solutions of rod-like macromolecules. J Chem Phys 19:281–283. doi:10.1063/1.1748194

    Article  Google Scholar 

  • Klein J (1996) Shear, friction, and lubrication forces between polymer-bearing surfaces. Annu Rev Mater Sci 26:581–612. doi:10.1146/annurev.ms.26.080196.003053

    Article  Google Scholar 

  • Krishnamoorti R, Giannelis EP (1997) Rheology of end-tethered polymer layered silicate nanocomposites. Macromolecules 30:4097–4102. doi:10.1021/ma960550a

    Article  Google Scholar 

  • Lagaly G (1989) Principles of flow of kaolin and bentonite dispersions. Appl Clay Sci 4:105–123. doi:10.1016/0169-1317(89)90003-3

    Article  Google Scholar 

  • Lagaly G (2006) Colloid clay science. In: Bergaya F, Theng BKG, Lagaly G (eds) Developments in clay science, vol 1. Elsevier, Oxford, pp 141–245

    Google Scholar 

  • Lekkerkerker H, Vroege G (2013) Liquid crystal phase transitions in suspensions of mineral colloids: new life from old roots. Philos T R Soc A 371:1–20. doi:10.1016/j.cocis.2004.12.001

    Article  Google Scholar 

  • Meng Q, Higdon JJ (2008) Large scale dynamic simulation of plate-like particle suspensions. Part I: Non-Brownian simulation. J Rheol 52:1. doi:10.1122/1.2798236

    Article  Google Scholar 

  • Moghbelli E, Sun L, Jiang H, Boo WJ, Sue H-J (2009) Scratch behavior of epoxy nanocomposites containing α-zirconium phosphate and core-shell rubber particles. Polym Eng Sci 49:483–490. doi:10.1002/pen.21305

    Article  Google Scholar 

  • Okagawa A, Mason S (1973) The kinetics of flowing dispersions. VII. Oscillatory behavior of rods and discs in shear flow. J Coll Interfaces Sci 45:330–358. doi:10.1016/0021-9797(73)90272-5

    Article  Google Scholar 

  • Ortega A, de la Torre JG (2003) Hydrodynamic properties of rodlike and disklike particles in dilute solution. J Chem Phys 119:9914

    Article  Google Scholar 

  • Petrich MP, Koch DL, Cohen C (2000) An experimental determination of the stress–microstructure relationship in semi-concentrated fiber suspensions. J Non-Newton Fluid Mech 95:101–133. doi:10.1016/S0377-0257(00)00172-5

    Article  Google Scholar 

  • Philippe A, Baravian C, Imperor-Clerc M et al (2011) Rheo-SAXS investigation of shear-thinning behaviour of very anisometric repulsive disc-like clay suspensions. J Phys Condens Math 23:194112. doi:10.1088/0953-8984/23/19/194112

    Article  Google Scholar 

  • Philippe A, Baravian C, Bezuglyy V et al (2013) Rheological study of two-dimensional very anisometric colloidal particle suspensions: from shear-induced orientation to viscous dissipation. Langmuir 29:5315–5324. doi:10.1021/la400111w

    Article  Google Scholar 

  • Shuai M, Mejia AF, Chang Y-W, Cheng Z (2013) Hydrothermal synthesis of layered α-zirconium phosphate disks: control of aspect ratio and polydispersity for nano-architecture. CrystEngComm 15:1970–1977. doi:10.1039/C2CE26402A

    Article  Google Scholar 

  • Stover CA, Koch DL, Cohen C (1992) Observations of fibre orientation in simple shear flow of semi-dilute suspensions. J Fluid Mech 238:277–296. doi:10.1017/S002211209200171X

    Article  Google Scholar 

  • Sue H-J, Gam KT, Bestaoui N et al (2004a) Fracture behavior of α-zirconium phosphate-based epoxy nanocomposites. Acta Mater 52:2239–2250. doi:10.1016/j.actamat.2004.01.015

    Article  Google Scholar 

  • Sue H-J, Gam KT, Bestaoui N, Spurr N, Clearfield A (2004b) Epoxy nanocomposites based on the synthetic α-zirconium phosphate layer structure. Chem Mater 16:242–249. doi:10.1021/cm051160i

    Article  Google Scholar 

  • Sun L, Boo WJ, Browning RL, Sue H-J, Clearfield A (2005) Effect of crystallinity on the intercalation of monoamine in α-zirconium phosphate layer structure. Chem Mater 17:5606–5609. doi:10.1021/cm051160i

    Article  Google Scholar 

  • Sun L, Boo WJ, Sue H-J, Clearfield A (2007a) Preparation of α-zirconium phosphate nanoplatelets with wide variations in aspect ratios. New J Chem 31:39–43. doi:10.1039/B604054C

    Article  Google Scholar 

  • Sun L, Boo WJ, Sun D, Clearfield A, Sue H-J (2007b) Preparation of exfoliated epoxy/α-zirconium phosphate nanocomposites containing high aspect ratio nanoplatelets. Chem Mater 19:1749–1754. doi:10.1021/cm062993r

    Article  Google Scholar 

  • Sun L, Boo WJ, Clearfield A, Sue H-J, Pham H (2008) Barrier properties of model epoxy nanocomposites. J Membr Sci 318:129–136. doi:10.1016/j.memsci.2008.02.041

    Article  Google Scholar 

  • Sun L, Boo WJ, Liu J et al (2009) Effect of nanoplatelets on the rheological behavior of epoxy monomers. Macromol Mater Eng 294:103–113. doi:10.1002/mame.200800258

    Article  Google Scholar 

  • Tindwa RM, Ellis DK, Peng G-Z, Clearfield A (1985) Intercalation of n-alkylamines by α-zirconium phosphate. J Chem Soc Faraday Trans 1(81):545–552

    Article  Google Scholar 

  • Trinkle S, Friedrich C (2001) Van Gurp-Palmen-plot: A way to characterize polydispersity of linear polymers. Rheol Acta 40:322–328. doi:10.1007/s003970000137

    Article  Google Scholar 

  • Trinkle S, Walter P, Friedrich C (2002) Van Gurp-Palmen plot II–classification of long chain branched polymers by their topology. Rheol Acta 41:103–113. doi:10.1007/s003970200010

    Article  Google Scholar 

  • Troup J, Clearfield A (1977) Mechanism of ion exchange in zirconium phosphates. 20. Refinement of the crystal structure of α-zirconium phosphate. Inorg Chem 16:3311–3314. doi:10.1021/ic50178a065

    Article  Google Scholar 

  • Van der Werff J, De Kruif C (1989) Hard-sphere colloidal dispersions: the scaling of rheological properties with particle size, volume fraction, and shear rate. J Rheol 33:421. doi:10.1122/1.550062

    Article  Google Scholar 

  • van Gurp M, Palmen J (1998) Time-temperature superposition for polymeric blends. Rheol Bull 67:5–8

    Google Scholar 

  • White KL (2013) Rheology of model nanoparticle suspensions in epoxy. Dissertation, Texas A&M University

  • White KL, Jin L, Ferrer N et al (2013) Rheological and thermal behaviors of commercial poly(aryletherketone)s. Polym Eng Sci 53:651–661. doi:10.1002/pen.23309

    Article  Google Scholar 

  • White KL, Li P, Sumi Y, Sue H-J (2014) Rheology of disentangled multi-walled carbon nanotubes dispersed in uncured epoxy fluid. J Phys Chem B 118:362–371. doi:10.1021/jp4110272

    Article  Google Scholar 

  • Wong M, Ishige R, Hoshino T et al (2014a) Solution processable iridescent self-assembled nanoplatelets with finely tunable inter-layer distances using charge- and sterically stabilizing oligomeric surfactants. Chem Mater 26:1528–1537. doi:10.1021/cm402991c

    Article  Google Scholar 

  • Wong M, Ishige R, White KL, et al. (2014b) Large-scale self-assembled ZrP nanoplatelet/polymer layers with tunable gas permeability via spray-coating of nanoplatelet filled solutions. Nat Comm (in press) doi:10.1038/ncomms4589

Download references

Acknowledgments

The authors acknowledge partial financial support by KANEKA Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hung-Jue Sue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

a Chemical structure and b dimensions of TBA (DOCX 224 kb)

Supplemental Fig. 2

Horizontal shift factor, a T , used for time-temperature superposition of unfilled epoxy (black squares) and epoxy/ZrP-TBA (0.8 vol.%) (red circles). For both systems, vertical shift factor, b T , fixed at 1. (DOCX 42 kb)

Supplemental Fig. 3

Influence of deformation history on rheology of ZrP-M600 systems at volume fraction of a 0.2 vol.% and b 0.8 vol.%, in epoxy suspending fluid (DOCX 53 kb)

Appendix: Calculation of rotary diffusion coefficients

Appendix: Calculation of rotary diffusion coefficients

The rotary diffusion coefficients were calculated following the detailed framework of dilute suspension rheology for dilute spheroids described by Brenner (1974). The rotary diffusivity of a spheroid perpendicular to its symmetry axis (i.e., tumbling motion) is given by D r  = k B T/6V η m r K , where k B T is the thermal energy, V is the particle volume, and η m is the viscosity of the unfilled solvent. The rotary diffusivity of a spheroid parallel to its symmetry axis (i.e., spinning motion) is D r  = k B T/6V p η s r K . The dimensionless material constants r K and r K are scalars that depend only on geometry. For an isolated spheroid with axial ratio r = a/b, where a and b are the polar and equatorial radii of the spheroid, respectively, r K  = 2(r 2 + 1)/3(r 2 α  + α ) and r K  = 2/3α , where the α terms are shape integrals related to the geometry of the spheroids and are given by Brenner (1974). The volume of a spheroid is V = 4πab 2/3. For convenience, in the main text we define the aspect ratio of the nanoplatelets to be r p  = L/t > 1 and the aspect ratio of the equivalent oblate spheroids to be r = a/b < 1.

To determine the hydrodynamic properties of a real particle, it is necessary to define an effective spheroid with equivalent hydrodynamic properties. The particles used in this work are hexagonal sheets with diameter, L, and monodisperse thickness, t. The volume of a hexagonal sheet is \( V=\sqrt{3}{L}^2t/2 \). Since the length scale for hydrodynamic perturbation will be determined by the diameter of a high aspect ratio plate, the equatorial radius of the equivalent spheroid was defined as b = L/2, where L is the nanoplatelet diameter.

For real particles, edge effects are generally accounted for by defining a spheroid with equivalent hydrodynamic properties to the real plate-like particles of interest using a correlation function. However, for plate-like particles, the available correlations are empirical functions based on visual evidence of rotational period for micron-scale plate-like particles of moderate aspect ratio (c.f. (Anczurowski and Mason 1967; Okagawa and Mason 1973)). There are no relevant correlation functions available for high aspect ratio nanoparticles, so it was assumed that the diameter and volume of the nanoplatelet and effective spheroid were equivalent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

White, K.L., Li, P., Yao, H. et al. Effect of surface modifier on flow properties of epoxy suspensions containing model plate-like nanoparticles. Rheol Acta 53, 571–583 (2014). https://doi.org/10.1007/s00397-014-0783-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-014-0783-1

Keywords

Navigation