Skip to main content
Log in

Stress diffusion and high order viscoelastic effects in the 3D flow past a sedimenting sphere subject to orthogonal shear

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The effect of polymer stress diffusion in the unbounded flow past a sedimenting, freely rotating, rigid sphere subject to shear in a plane perpendicular to the direction of sedimentation is investigated analytically. Steady state, creeping, incompressible, and isothermal flow is assumed. For viscoelastic fluids following the Oldroyd-B constitutive model, three-dimensional results for the velocity vector, pressure, and viscoelastic extra-stress tensor are derived by including an artificial diffusion term in the constitutive equation and using regular perturbation theory with the small parameter being the Deborah number. The analytical solution reveals that the influence of the stress diffusion term on the results may be significant (and sometimes unexpected) and strongly depends on the magnitude of the dimensionless diffusion coefficient. For instance, it is shown that the critical Deborah number, below which a physical solution arises, decreases with the increase in the diffusion coefficient. Also, comparison against simulation results from the literature shows excellent agreement up to shear Weissenberg number (defined as the product of the imposed shear rate with the single relaxation time of the fluid) approximately equal to unity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arigo MT, Rajagopalan D, Shapley N, McKinley GH (1995) The sedimentation of a sphere through an elastic fluid. Part1. Steady motion. J Non-Newtonian Fluid Mech 60: 225–257

    Article  Google Scholar 

  • Balci N, Thomases B, Renardy M, Doering CR (2011) Symmetric factorization of the conformation tensor in viscoelastic fluid models. J Non-Newtonian Fluid Mech 166: 546–553

    Article  Google Scholar 

  • Beris AN, Edwards BJ (1994) Thermodynamics of flowing systems. Oxford University Press, New York

    Google Scholar 

  • van den Brule B H A A, Gheissary G (1993) Effects of fluid elasticity on the static and dynamic settling of a spherical particle. J Non-Newtonian Fluid Mech 49: 123–132

    Article  Google Scholar 

  • D’Avino G, Hulsen MA, Snijkers F, Vermant J, Greco F, Maffettone PL (2008) Rotation of a sphere in a viscoelastic liquid subjected to shear. Part I. Simulation results. J Rheol 52: 1331–1346

    Article  Google Scholar 

  • Gheissary G, van den Brule BHAA (1996) Unexpected phenomena observed in particle settling in non-Newtonian media. J Non-Newtonian Fluid Mech 67: 1–18

    Article  Google Scholar 

  • Giesekus H (1963) Die simultane translations- und rotations bewegung einer kugel in einer elastoviskosen flussigkeit. Rheol Acta 3: 59–71

    Article  Google Scholar 

  • Housiadas KD, Tanner R I (2011a) The angular velocity of a freely rotating sphere in a weakly viscoelastic matrix fluid. Phys Fluids 051702(4 pages): 23

    Google Scholar 

  • Housiadas KD, Tanner RI (2011b) Perturbation solution for the viscoelastic 3D flow around a rigid sphere subject to simple shear. Phys Fluids 083101(21 pages): 23

    Google Scholar 

  • Housiadas KD, Tanner RI (2012) The drag of a freely sedimentating sphere in a sheared weakly viscoelastic fluid. J Non-Newtonian Fluid Mech 183-184: 52–56

    Article  Google Scholar 

  • Housiadas KD, Wang L, Beris AN (2010) A new method preserving the positive definiteness of a second order tensor variable in flow simulations with application to viscoelastic turbulence. Comp Fluids 39: 225–241

    Article  Google Scholar 

  • Leal LG (2007) Advanced transport phenomena. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Leslie F M (1961) The slow motion of a visco-elastic liquid past a sphere, with an appendix by Tanner RI. Quart J Mech Appl Math XIV 1: 36–48

    Article  Google Scholar 

  • Padhy S, Shaqfeh ESG, Iaccarino G, Morris JF, Tonmukayakul N. (2013a) Simulations of a sphere sedimenting in a viscoelastic fluid with cross shear flow. J Non-Newtonian Fluid Mech 197: 48–60

    Article  Google Scholar 

  • Padhy S, Rodriguez M, Shaqfeh ESG, Iaccarino G, Morris JF, Tonmukayakul N (2013b) The effect of shear thinning and walls on the sedimentation of a sphere in an elastic fluid under orthogonal shear. J Non-Newtonian Fluid Mech 201: 107–119

    Article  Google Scholar 

  • Ptasinski PK, Boersma BJ, Nieuwstadt FTM, Hulsen MA, van den Brule BHAA, Hunt JCR (2003) Turbulent channel flow near maximum drag reduction: simulations, experiments and mechanisms. J Fluid Mech 490: 251–291

    Article  Google Scholar 

  • Richter D, Iaccarino G, Shaqfeh E (2010) Simulations of three-dimensional viscoelastic flows past a circular cylinder at moderate Reynolds number. J Fluid Mech 651: 415–442

    Article  Google Scholar 

  • Snijkers F, Avino GD, Maffettone PL, Greco F, Hulsen M, Vermant J (2009) Rotation of a sphere in a viscoelastic liquid subjected to shear. Part II. Experimental results. J Rheol 53: 459–480

    Article  Google Scholar 

  • Thomases B (2011) An analysis of the effect of stress diffusion on the dynamics of creeping viscoelastic flow. J Non-Newtonian Fluid Mech 166: 1221–1228

    Article  Google Scholar 

  • Thomases B, Shelley M, Thiffeault JL (2011) A Stokesian viscoelastic flow: transition to oscillations and mixing. Phys D 240: 1602–1614

    Article  Google Scholar 

  • Yang B, Khomami B (1999) Simulations of sedimentation of a sphere in a viscoelastic fluid using molecular based constitutive models. J Non-Newtonian Fluid Mech 82: 429–452

    Article  Google Scholar 

  • Research, Wolfram Inc., Mathematica Edition: Version 9.0, Champaign, Illinois (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostas D. Housiadas.

Appendix

Appendix

The individuals contributions to the total drag force, up to fourth order in Deborah number, are:

Form drag: D P D P0+De D P1+De2 D P2+De3 D P3+De4 D P4, where

$$D_{P0} =2\pi $$
$$D_{P1} =0 $$
$$\begin{array}{@{}rcl@{}} D_{P2} &=&\pi \eta_{p} \left\{ -\frac{3951}{25025}+\frac{33535a^{2}}{14014}\right.\\ &&\left.\qquad\quad+\left( {\frac{3}{175}-\frac{127285a^{2}}{68796}} \right)\eta_{p} \right\}\\ D_{P3} &=&\pi \,\mu \,\eta_{p} \left\{ \frac{127(-10962+11155\,a^{2})}{45045}\right.\\ &&\qquad\qquad+\left( {\frac{1511802}{120120}-\frac{12542935\,a^{2}}{120120}} \right)\eta_{p}\\ &&\qquad\qquad\left.+\left( {-\frac{215514}{180180}+\frac{5604785\,a^{2}}{180180}} \right){\eta_{p}^{2}} \right\}\\ D_{P4} &=&\pi \,\eta_{p} \left\{ m_{P,0} +m_{P,1} \eta_{p} +m_{P,2} \eta _{p}^{2} +m_{P,3} {\eta_{p}^{3}}\right.\\ &&\left.\qquad\quad +\mu^{2}\left( {l_{P,0} +l_{P,1} \eta_{p} +l_{P,2} {\eta_{p}^{2}} +l_{P,3} {\eta_{p}^{3}} } \right) \right\} \end{array} $$

Friction drag: D V D V0+De D V1+D e 2 D V2+D e 3 D V3+D e 4 D V4, where

$$ D_{V0} =4\pi \notag $$
$$ D_{V1} =0 \notag $$
$$ D_{V2} \,=\,\pi \eta_{p} \left\{ {\frac{2403}{25025}\,+\,\frac{23735a^{2}}{7007}-\left( {\frac{9}{175}\,+\,\frac{538735a^{2}}{189189}} \right)\eta_{p} } \right\} \notag $$
$$\begin{array}{@{}rcl@{}} D_{V3} &=&\pi \,\mu \,\eta_{p} \left\{ \frac{6846}{143}+\frac{\text{2570236}{\kern 1pt}a^{2}}{\text{9009}}\right.\\ &&\qquad\qquad-\left( {\frac{\text{28398\thinspace \thinspace }}{\text{5005}}+\frac{\text{640883}a^{2}}{\text{12012}}} \right)\eta_{p}\\ &&\left.\qquad\qquad+\left( {\frac{60}{7}+\frac{\text{377413\thinspace }a^{2}}{\text{18018}}} \right){\eta_{p}^{2}} \right\} \notag\end{array} $$
$$\begin{array}{@{}rcl@{}} D_{V4} &=&\pi \,\eta_{p} \left\{ m_{V,0} +m_{V,1} \eta_{p} +m_{V,2} \eta _{p}^{2} +m_{V,3} {\eta_{p}^{3}}\right.\\ &&\left.\qquad\quad+\mu^{2}\left( {l_{V,0} +l_{V,1} \eta_{p} +l_{V,2} {\eta_{p}^{2}} +l_{V,3} {\eta_{p}^{3}} } \right) \right\} \notag\end{array} $$

Elastic drag: D E D E0+De D E1+De2 D E2+De3 D E3+De4 D E4, where:

$$ D_{E0} =D_{E1} =D_{E2} =0 \notag $$
$$\begin{array}{@{}rcl@{}} D_{E3} &=&-\frac{4\pi \,\mu \,\eta_{p} }{35}\left\{ 3(63+925a^{2})+\eta_{p} (63-900a^{2}\right.\\ &&\qquad\qquad\quad\left.+7(9+25a^{2})\eta_{p} ) \right\} \notag\end{array} $$
$$ D_{E4} =0 \notag $$

Note that m j =(m P,j +m V,j )/6 and l j =(l P,j +l V,j )/6,j=0,1,2,3 where m j ,l j also appear in the expression for the total drag, Eq. (33). The exact form of all these constants is the following:

$$\begin{array}{@{}rcl@{}} m_{P,0} &=&\!\!\frac{1191018}{11316305}\!\,+\,\!\frac{83050099793}{149918408640}a^{2}\,-\,\frac{2843447503601}{1484192245536}a^{4}\\ m_{P,1} &=&-\frac{203229914661}{6472926460000}+\frac{461167076437383887}{1071487855127289600}a^{2}\\ &&+\frac{18378215376689321853241}{2620109252142761258880}a^{4}\\ m_{P,2} &=&\frac{155605234737}{8238270040000}-\frac{49931383324670597}{214297571025457920}a^{2}\\ &&-\frac{1605323717329068271147}{227835587142848805120}a^{4}\\ m_{P,3} &=&-\frac{16987380103}{2384762380000}+\frac{135028136834209}{4110567219158400}a^{2}\\ &&+\frac{173007849818839694311}{63646378594561002240}a^{4}\\ \end{array} $$
$$\begin{array}{@{}rcl@{}} l_{P,0} &=&\frac{192893328}{12155}+\frac{4086250606}{323323}a^{2} \\ l_{P,1} &=&-\frac{58982301}{5720}+\frac{2993536913}{68068}a^{2} \\ l_{P,2} &=&\frac{1558368}{715}-\frac{575537264}{51051}a^{2} \\ l_{P,3} &=&-\frac{244917}{1430}+\frac{5015944}{17017}a^{2} \\ \end{array} $$
$$\begin{array}{@{}rcl@{}} m_{0} &=&\frac{2\,524\,971}{181\,060\,880}+\frac{38\,233\,944\,659}{899\,510\,451\,840}a^{2}\\ &&-\frac{2\,937\,202\,878\,593}{2\,968\,384\,491\,072}a^{4} \\ m_{1} &=&\frac{117\,018\,471}{681\,360\,680\,000}+\frac{1810219875810923}{10253472297868800}a^{2}\\ &&+\frac{13763975185670117186047}{5240218504285522517760}a^{4} \\ m_{2} &=&-\frac{447910935363}{181241940880000}-\frac{66062207387331247}{428595142050915840}a^{2}\\ &&-\frac{2340625218055859031859}{952767000779185912320}a^{4} \\ m_{3} &=&\frac{2426923127}{4769524760000}+\frac{369517655537579}{8221134438316800}a^{2}\\ &&+\frac{4528896505546350733}{4714546562560074240}a^{4} \end{array} $$
$$\begin{array}{@{}rcl@{}} l_{0} &=&-\frac{9196032}{12155}-\frac{33149131711}{969969}a^{2} \\ l_{1} &=&-\frac{699173433}{816816}+\frac{17463838019}{408408}a^{2} \\ l_{2} &=&\frac{209964}{715}-\frac{515925959}{17017}a^{2} \\ l_{3} &=&\frac{1276107}{2860}+\frac{1908703028}{153153}a^{2} \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Housiadas, K.D. Stress diffusion and high order viscoelastic effects in the 3D flow past a sedimenting sphere subject to orthogonal shear. Rheol Acta 53, 537–548 (2014). https://doi.org/10.1007/s00397-014-0777-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-014-0777-z

Keywords

Navigation