Skip to main content
Log in

Influence of pressure on polyamide 66 shear viscosity: a case study towards polar polymers behavior

  • ORIGINAL CONTRIBUTION
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

In the present work, we consider the dependence of the viscosity of polyamide 66 (PA66) as a function of both temperature and pressure. Measurements were carried out using a standard capillary rheometer to evaluate the effect of temperature and the corresponding shift factor of viscosity data. The pressure influence was accounted for by employing an at-line rheometer equipped with a counter-pressure cell, the so-called enhanced exit pressure method. Time-temperature-pressure superposition was applied to obtain the viscosity master curve. Interestingly, PA66 displays an unusual increase of the pressure coefficient as a function of temperature. On the contrary, previous studies on nonpolar liquids or polymers for which polar interactions are relatively weak indicated that the sensitivity to pressure, measured by the so-called Barus parameter, is a decreasing function of the temperature. Thus, we attribute the peculiar behavior of PA66 to the strong polar interactions which are present and which may dominate the viscosity at relatively low temperatures and would be less dominant at higher temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aho J, Syrjala S (2010) Measurement of the pressure dependence of viscosity of polymer melts using a back pressure-regulated capillary rheometer. J Appl Polym Sci 117:1076–1084

    Article  Google Scholar 

  • Alba-Simionesco C, Kivelson D, Tarjus GJ (2002) Temperature, density, and pressure dependence of relaxation times in supercooled liquids. Chem Phys 116:5033–5038

    Article  Google Scholar 

  • Angell CA (1995) Formation of glasses from liquids and biopolymers. Science 267:1924–1935

    Article  Google Scholar 

  • Barbieri A, Gorini G, Leporini D (2004) Role of the density in the crossover region of o-terphenyl and poly(vinyl acetate). Phys Rev E 69:061509

    Article  Google Scholar 

  • Barus CJ (1891) Note on dependence of viscosity on pressure and temperature. Proc Am Acad 27:13–19

    Article  Google Scholar 

  • Binding DM, Couch MA, Walters K (1998) The pressure dependence of the shear and elongational properties of polymer melts. J Non-Newtonian Fluid Mech 79:137–155

    Article  Google Scholar 

  • Cardinaels R, Van Puyvelde P, Moldenaers P (2007) Evaluation and comparison of routes to obtain pressure coefficients from high-pressure capillary rheometry data. Rheol Acta 46:495–505

    Article  Google Scholar 

  • Carreras ES, El Kissi N, Piau JM, Toussaint F, Nigen S (2006) Pressure effects on viscosity and flow stability of polyethylene melts during extrusion. Rheol Acta 45:209–222

    Article  Google Scholar 

  • Casalini R, Paluch M, Roland CM (2003a) Influence of molecular structure on the dynamics of supercooled van der Waals liquids. Phys Rev E 67:031505

    Article  Google Scholar 

  • Casalini R, Paluch M, Roland CM (2003b) Dynamic crossover in supercooled liquids induced by high pressure. J Chem Phys 118:5701–5703

    Article  Google Scholar 

  • Choi SY (1968) Determination of melt viscosity as a function of hydrostatic pressure in an extrusion rheometer. J Polym Sci Part A-2: Polym Phys 6:2043–2049

    Article  Google Scholar 

  • Cogswell FN (1973) Influence of pressure on the viscosity of polymer melts. Plast Polym 14:39–43

    Google Scholar 

  • Couch MA, Binding DM (2000) High pressure capillary rheometry of polymeric fluids. Polymer 41:6323–6334

    Article  Google Scholar 

  • Dees M, Mangnus M, Hermans N, Thaens W, Hanot AS, Van Puyvelde P (2011) On the pressure correction of capillary melt rheology data. Rheol Acta 50:117–124

    Article  Google Scholar 

  • Ediger MD, Angell CA, Nagel SR (1996) Supercooled liquids and glasses. J Phys Chem 100:13200–13212

    Article  Google Scholar 

  • Fernandez M, Munoz ME, Santamaria A, Syrjala S, Aho J (2009) Determining the pressure dependency of the viscosity using PVT data: a practical alternative for thermoplastics. Polym Testing 28:109–113

    Article  Google Scholar 

  • Ferrer ML, Lawrence C, Demirjian BG, Kivelson D, Alba-Simionesco C, Tarjus G (1998) Supercooled liquids and the glass transition: temperature as the control variable. J Chem Phys 109:8010–8015

    Article  Google Scholar 

  • Ferry JD (1980) In: viscoelastic properties of polymers. Wiley, New York

    Google Scholar 

  • Goubert A, Vermant J, Moldenaers P, Gottfert A, Ernst W (2001) Comparison and measurement techniques for evaluating the pressure dependence of the viscosity. Appl Rheol 11:26–37

    Google Scholar 

  • Hausnerova B, Sedlacek T, Slezak R, Saha P (2006) Pressure-dependent viscosity of powder injection moulding compounds. Rheol Acta 45:290–296

    Article  Google Scholar 

  • Liang JZ (2001) Pressure effect of viscosity for polymer fluids in die flow. Polym 42:3709–3712

    Article  Google Scholar 

  • Kadijk SE, Vandenbrule BHAA (1994) On the pressure dependency of the viscosity of molten polymers. Polym Eng Sci 34:1535–1546

    Article  Google Scholar 

  • Kahle S, Gapinski J, Hinze G, Patkowski A, Meier G (2005) A comparison of relaxation processes in structurally related van der Waals glass formers: the role of internal degrees of freedom. J Chem Phys 122:074506

    Article  Google Scholar 

  • Kamal MR, Nyun H (1973) Effect of pressure on shear viscosity of polymer melts. T Soc Rheol 17:271–285

    Article  Google Scholar 

  • Kohan MI (1995) Nylon plastics handbook. Hanser, New York

    Google Scholar 

  • Maxwell B, Jung A (1957) Hydrostatic pressure effect on polymer melt viscosity. Mod Plast 35:174–182

    Google Scholar 

  • Merabia S, Long D (2002) Heterogeneous dynamics at the glass transition in van der Waals liquids: determination of the characteristic scale. Eur Phys J E 9:195–206

    Article  Google Scholar 

  • Merabia S, Long D (2008) Heterogeneous dynamics and pressure dependence of the dynamics in van der Waals liquids. Macromolecules 41:3284–3296

    Article  Google Scholar 

  • Paluch M, Casalini R, Patkowski A, Pakula T, Roland CM (2003a) Effect of volume changes on segmental relaxation in siloxane polymers. Phys Rev E 68:031802

    Article  Google Scholar 

  • Paluch M, Roland CM, Casalini R, Meier G, Patkowski A (2003b) The relative contributions of temperature and volume to structural relaxation of van der Waals molecular liquids. J Chem Phys 118:4578–4582

    Article  Google Scholar 

  • Pantani R, Sorrentino A (2005) Pressure effect on viscosity for atactic and syndiotactic polystyrene. Polym Bull 54:365–376

    Article  Google Scholar 

  • Pawlus S, Bartos J, Sausa O, Kristiak J, Paluch M (2006) Positronium annihilation lifetimes and dielectric spectroscopy studies on diethyl phthalate: phenomenological correlations and microscopic analyses in terms of the extended free volume model by Cohen-Grest. J Chem Phys 124:104505

    Article  Google Scholar 

  • Penwell RC, Porter RS (1971) Determination of the pressure coefficient and pressure effects in capillary flow. J Polym Sci 9:463–745

    Article  Google Scholar 

  • Piyamanocha P, Sedlacek T, Saha P (2011) On pressure affected shear viscosity of poly(lactic) acid. AIP Conf Proc 1375:194–200

    Article  Google Scholar 

  • Roland CM, Casalini R (2003) Temperature and volume effects on local segmental relaxation in poly(vinyl acetate). Macromolecules 36:1361–1367

    Article  Google Scholar 

  • Roland CM, Paluch M, Pakula T, Casalini R (2004) Volume and temperature as control parameters for the dielectric a relaxation of polymers and molecular glass formers. Philos Mag 84:1573–1581

    Article  Google Scholar 

  • Roland CM, Bair S, Casalini R (2006) Thermodynamic scaling of the viscosity of van der Waals, H-bonded, and ionic liquids. J Chem Phys 125:124508

    Article  Google Scholar 

  • Sedlacek T, Zatloukal M, Filip P, Boldizar A, Saha P (2004) On the effect of pressure on the shear and elongational viscosities of polymer melts. Polym Eng Sci 44:1328–1337

    Article  Google Scholar 

  • Sedlacek T, Lengalova A, Zatloukal M, Cermak R, Saha P (2006) Pressure and temperature dependence of LDPE viscosity and free volume: the effect of molecular structure. Int Polym Proc 21:98–103

    Article  Google Scholar 

  • Son Y (2009) Measurement of pressure dependence on the shear viscosity of polymer melts. J Polym Res 16:667–671

    Article  Google Scholar 

  • Sorrentino A, Pantani R (2009) Pressure-dependent viscosity and free volume of atactic and syndiotactic polystyrene. Rheol Acta 48:467–478

    Article  Google Scholar 

  • Sperling LH (1992) Polymer viscoelasticity and rheology. Introduction to physical polymer science. Wiley, New York, pp 458–502

    Google Scholar 

  • Utracki LA (1985) A method of computation of the pressure effect on melt viscosity. Polym Eng Sci 25:655–668

    Article  Google Scholar 

  • Utracki LA, Sedlacek T (2011) Free volume dependence of polymer viscosity. Rheol Acta 46:479–494

    Article  Google Scholar 

  • Wang B, Wang ZF, Zhang M, Liu WH, Wang SJ (2002) Effect of temperature on the free volume in glassy poly(ethylene terephthalate). Macromolecules 35:3993–3996

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Léo Georges for assisting in experimental work at Rhodia Centre de Recherches et Technologies de Lyon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Ceccia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ceccia, S., Cocquet, C., Trouillet-Fonti, L. et al. Influence of pressure on polyamide 66 shear viscosity: a case study towards polar polymers behavior. Rheol Acta 53, 181–190 (2014). https://doi.org/10.1007/s00397-013-0753-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-013-0753-z

Keywords

Navigation