Skip to main content
Log in

The rheology of suspensions of porous zeolite particles in polymer solutions

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

We present data and predictive models for the shear rheology of suspended zeolite particles in polymer solutions. It was found experimentally that suspensions of zeolite particles in polymer solutions have relative viscosities that dramatically exceed the Krieger–Dougherty predictions for hard sphere suspensions. Our investigations show that the major origin of this discrepancy is due to the selective absorption of solvent molecules from the suspending polymer solution into zeolite pores. The effect raises both the polymer concentration in the suspending medium and the particle volume fraction in the suspension. Consequently, both the viscosity of the polymer solution and the particle contribution to the suspension viscosity are increased. We propose a predictive model for the viscosity of porous zeolite suspensions by incorporating a solvent absorption parameter, α, into the Krieger–Dougherty model. We experimentally determined the solvent absorption parameter by comparing viscosity data for suspensions of porous and nonporous MFI zeolite particles. Our results are in good agreement with the theoretical pore volume of MFI particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Batchelor GK (1977) Effect of Brownian-motion on bulk stress in a suspension of spherical-particles. J Fluid Mech 83:97–117

    Article  Google Scholar 

  • Booth F (1950) The electroviscous effect for suspensions of solid spherical particles. Proc R Soc Lond Ser A-Math Phys Sci 203:533–551

    Article  Google Scholar 

  • Cheng CH, Bae TH, McCool BA, Chance RR, Nair S, Jones CW (2008) Functionalization of the internal surface of pure-silica MFI zeolite with aliphatic alcohols. J Phys Chem C 112:3543–3551

    Article  Google Scholar 

  • Chung TS, Jiang LY, Li Y, Kulprathipanja S (2007) Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog Polym Sci 32:483–507

    Article  Google Scholar 

  • de Oliveira IS, van den Noort A, Padding JT, den Otter WK, Briels WJ (2011) Alignment of particles in sheared viscoelastic fluids. J Chem Phys 135:104902

    Article  Google Scholar 

  • Einstein A (1906) A new determination of the molecular dimensions. Ann Phys 19:289–306

    Article  Google Scholar 

  • Einstein A (1911) A new determination of the molecular dimensions (vol 19, pg 289, 1906). Ann Phys 34:591–592

    Article  Google Scholar 

  • Ekiner OM, Vassilatos G (1990) Polyaramide hollow fibers for hydrogen methane separation–spinning and properties. J Membr Sci 53:259–273

    Article  Google Scholar 

  • Ekiner OM, Vassilatos G (2001) Polyaramide hollow fibers for H 2/CH 4 separation–II. Spinning and properties. J Membr Sci 186:71–84

    Article  Google Scholar 

  • Flanigen EM, Bennett JM, Grose RW, Cohen JP, Patton RL, Kirchner RM, Smith JV (1978) Silicalite, a new hydrophobic crystalline silica molecular-sieve. Nature 271:512–516

    Article  Google Scholar 

  • Fyfe CA, Gobbi GC, Klinowski J, Thomas JM, Ramdas S (1982) Resolving crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR. Nature 296:530–533

    Article  Google Scholar 

  • Husain S (2006) Mixed matrix dual layer hollow fiber membranes for natural gas separation. PhD Dissertation, Georgia Institute of Technology, Atlanta

  • Husain S, Koros WJ (2007) Mixed matrix hollow fiber membranes made with modified HSSZ-13 zeolite in polyetherimide polymer matrix for gas separation. J Membr Sci 288:195–207

    Article  Google Scholar 

  • Jeffery GB (1922a) The motion of ellipsoidal particles in a viscous fluid. Proc Roy Soc (London), Ser A-Containing Papers Mathematical Physical Character 102:161–179

    Article  Google Scholar 

  • Jeffery GB (1922b) The rotation of two circular cylinders in a viscous fluid. Proc R Soc Lond Ser A-Containing Papers Mathematical Physical Character 101:169–174

    Article  Google Scholar 

  • Kitano T, Kataoka T, Shirota T (1981) An empirical equation of the relative viscosity of polymer melts filled with various inorganic fillers. Rheol Acta 20:207–209

    Article  Google Scholar 

  • Krieger IM, Dougherty TJ (1959) A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans Soc Rheol 3:137–152

    Article  Google Scholar 

  • Mahajan R, Koros WJ (2000) Factors controlling successful formation of mixed-matrix gas separation materials. Ind Eng Chem Res 39:2692–2696

    Article  Google Scholar 

  • Mahajan R, Koros WJ (2002a) Mixed matrix membrane materials with glassy polymers. Part 1. Polym Eng Sci 42:1420–1431

    Article  Google Scholar 

  • Mahajan R, Koros WJ (2002b) Mixed matrix membrane materials with glassy polymers. Part 2. Polym Eng Sci 42:1432–1441

    Article  Google Scholar 

  • Malkin AY (2012) Non-Newtonian viscosity in steady-state shear flows. J Non-Newtonian Fluid Mech 192:48–65

    Article  Google Scholar 

  • Metzner AB (1985) Rheology of suspensions in polymeric liquids. J Rheol 29:739–775

    Article  Google Scholar 

  • Moore TT, Mahajan R, Vu DQ, Koros WJ (2004) Hybrid membrane materials comprising organic polymers with rigid dispersed phases. AIChE J 50:311–321

    Article  Google Scholar 

  • Mueller S, Llewellin EW, Mader HM (2010) The rheology of suspensions of solid particles. Proc R Soc A-Math Phys Eng Sci 466:1201–1228

    Article  Google Scholar 

  • Pabst W, Gregorova E, Berthold C (2006) Particle shape and suspension rheology of short-fiber systems. J Eur Ceram Soc 26:149–160

    Article  Google Scholar 

  • Pasquino R, Grizzuti N, Maffettone PL, Greco F (2008) Rheology of dilute and semidilute noncolloidal hard sphere suspensions. J Rheol 52:1369

    Article  Google Scholar 

  • Pasquino R, Panariello D, Grizzuti N (2012) Migration and alignment of spherical particles in sheared viscoelastic suspensions. A quantitative determination of the flow-induced self-assembly kinetics. J Colloid Interface Sci 394:49–54

    Article  Google Scholar 

  • Paul DR, Kemp DR (1973) Diffusion time lag in polymer membranes containing adsorptive fillers. J Polym Sci Part C-Polym Symp 41:79–93

    Article  Google Scholar 

  • Robeson LM (1991) Correlation of separation factor versus permeability for polymeric membranes. J Membr Sci 62:165–185

    Article  Google Scholar 

  • Robeson LM (2008) The upper bound revisited. J Membr Sci 320:390–400

    Article  Google Scholar 

  • Russel WB (1976) Low-shear limit of secondary electroviscous effect. J Colloid Interface Sci 55:590–604

    Article  Google Scholar 

  • Schoeman BJ (1997a) A spectroscopic study of the initial stage in the crystallization of TPA-silicalite-1 from clear solutions. In: Chon H, Ihm SK, Uh YS (eds) Progress in zeolite and microporous materials, Pts a-C, vol 105, pp 647–654

  • Schoeman BJ (1997b) The homogeneous nature of clear TPA-silicalite-1 precursor solutions. Microporous Mater 9:267–271

    Article  Google Scholar 

  • Snijkers F, Pasquino R, Vermant J (2013) Hydrodynamic interactions between two equal-sized spheres in viscoelastic fluids in shear flow. Langmuir 29:5701–5713

    Article  Google Scholar 

  • Stimson M, Jeffery GB (1926) The motion of two spheres in a viscous fluid. Proc R Soc Lond Ser A-Containing Papers Mathematical Physical Character 111:110–116

    Article  Google Scholar 

  • Vaynberg KA, Wagner NJ (2001) Rheology of polyampholyte (gelatin)-stabilized colloidal dispersions: the tertiary electroviscous effect. J Rheol 45:451–466

    Article  Google Scholar 

  • Wallace DW, Staudt-Bickel C, Koros WJ (2006) Efficient development of effective hollow fiber membranes for gas separations from novel polymers. J Membr Sci 278:92–104

    Article  Google Scholar 

  • Watterson IG, White LR (1981) Primary electroviscous effect in suspensions of charged spherical-particles. J Chem Soc-Faraday Trans Ii 77:1115–1128

    Article  Google Scholar 

  • Zhou Z, Solomon MJ, Scales PJ, Boger DV (1999) The yield stress of concentrated flocculated suspensions of size distributed particles. J Rheol 43:651

    Article  Google Scholar 

  • Zurita L, Carrique F, Delgado AV (1994) The primary electroviscous effect in silica suspensions - ionic-strength and ph effects. Colloids Surf A-Physicochem Eng Aspects 92:23–28

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the ExxonMobil Corporation for the financial support for this work. We also wish to express our gratitude to Professors Bill Koros and Chris Jones for numerous discussions on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kayode O. Olanrewaju.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olanrewaju, K.O., Bae, TH., Nair, S. et al. The rheology of suspensions of porous zeolite particles in polymer solutions. Rheol Acta 53, 133–141 (2014). https://doi.org/10.1007/s00397-013-0746-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-013-0746-y

Keywords

Navigation