Rheologica Acta

, Volume 52, Issue 8–9, pp 741–751 | Cite as

Influence of degree of sulfation on the rheology of cellulose nanocrystal suspensions

  • Sadaf Shafeiei-Sabet
  • Wadood Y. Hamad
  • Savvas G. Hatzikiriakos
Original Contribution

Abstract

The rheology and microstructure of two different cellulose nanocrystals (CNC) samples possessing different degrees of sulfation are studied over a broad concentration range of 1 to 15 wt%. CNC suspensions are isotropic at low concentration and experience two different transitions as concentration increases. First, they form chiral nematic liquid crystals above a first critical concentration where the samples exhibit a fingerprint texture and the viscosity profile shows a three-region behavior, typical of liquid crystals. By further increasing the concentration, CNC suspensions form gels above a second critical concentration, where the viscosity profile shows a single shear-thinning behavior over the whole range of shear rates investigated. It has been found that the degree of sulfation of CNC particles has a significant effect on the critical concentrations at which transitions from isotropic to liquid crystal and liquid crystal to gel occur. Rheological properties and microstructure of these suspensions have been studied using polarized optical microscopy combined with rheometry.

Keywords

Cellulose nanocrystals (CNC) Rheology Suspension Sonication Chiral nematic Liquid crystal Degree of sulfation 

References

  1. Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf A Physicochem Eng Asp 142(1):75–82CrossRefGoogle Scholar
  2. Araki J, Wada M, Kuga SH, Okano T (1999) Influence of surface charge on viscosity behavior of cellulose microcrystal suspension. J Wood Sci 45:258–261CrossRefGoogle Scholar
  3. Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054CrossRefGoogle Scholar
  4. Bercea M, Navard P (2000) Shear dynamics of aqueous suspensions of cellulose whiskers. Macromolecules 33:6011–6016CrossRefGoogle Scholar
  5. Boluk Y, Lahiji R, Zhao L, McDermott MT (2011) Suspension viscosities and shape parameter of cellulose nanocrystals (CNC). Colloids Surf A Physicochem Eng Asp 377:297–303CrossRefGoogle Scholar
  6. Davis VA, Ericson LM, Parra-Vasquez ANG, Fan H, Wang Y, Prieto V, Longoria JA, Ramesh S, Saini RK, Kittrell C, Billups WE, Adams WW, Hauge RH, Smalley RE, Pasquali M (2004) Phase behavior and rheology of SWNTs in superacids. Macromolecules 37:154–160CrossRefGoogle Scholar
  7. Devendra R, Hatzikiriakos SG, Vogel R (2006) Rheology of metallocene polyethylene based nanocomposites: influence of graft modification. J Rheol 50:415–434CrossRefGoogle Scholar
  8. Dong XM, Kimura T, Revol JF, Gray DG (1996) Effects of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12(8):2076–2082CrossRefGoogle Scholar
  9. Dong XM, Revol JF, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32CrossRefGoogle Scholar
  10. Doraiswamy D, Mujumdar AN, Tsao I, Beris AN, Danforth SC, Metzner AB (1991) The Cox–Merz rule extended—a rheological model for concentrated suspensions and other materials with a yield stress. J Rheol 35(4):647–685CrossRefGoogle Scholar
  11. Hamad WY, Hu TQ (2010) Structure–process–yield interrelation in nanocrystalline cellulose extraction. Can J Chem 88(3):392–402Google Scholar
  12. Kang K, Lettinga MP, Dogic Z, Dhont JKG (2006) Vorticity banding in rodlike virus suspensions. Phys Rev E 74:026307–1–12CrossRefGoogle Scholar
  13. Lettinga MP, Dogic Z, Wang H, Vermant J (2005) Flow behavior of colloidal rodlike viruses in the nematic phase. Langmuir 21:8048–8057CrossRefGoogle Scholar
  14. Liu D, Chen X, Yue Y, Chen M, Wu Q (2011) Structure and rheology of nanocrystalline cellulose, carbohydrate. Polymer 84:316–322Google Scholar
  15. Marchessault RH, Morehead FF, Walter NM (1959) Liquid crystal systems from fibrillar polysaccharides. Nature 184:632–633CrossRefGoogle Scholar
  16. Marchessault RH, Morehead FF, Koch MJ (1961) Some hydrodynamic properties of neutral suspensions of cellulose crystallites as related to size and shape. J Colloid Sci 16:327–344CrossRefGoogle Scholar
  17. Muliawan EB, Hatzikiriakos SG (2007) Rheology of mozzarella cheese. Intern Dairy J 17:1063–1072CrossRefGoogle Scholar
  18. Odijk T (1986) Theory of lyotropic liquid crystals. Macromolecules 19:2313–2329CrossRefGoogle Scholar
  19. Onogi S, Asada T (1980) In rheology and rheo-optics of polymer liquid crystals. In: Astarita G, Marrucci G, Nicolais L (eds) Proceedings of the eighth international congress on rheology. Plenum, Napoles, pp 126–136Google Scholar
  20. Onsager L (1949) The effect of shape on the interactions of colloid particles. Ann N Y Acad Sci 51:627–659CrossRefGoogle Scholar
  21. Orts WJ, Godbout L, Marchessault RH, Revol JF (1998) Enhanced ordering of liquid crystalline suspensions of cellulose microfibrils: a small angle neutron scattering study. Macromolecules 31:5717–5725CrossRefGoogle Scholar
  22. Revol JF, Marchessault RH (1994) In vitro chiral nematic ordering of chitin crystallites. Int J Biol Macromol 15:329–335CrossRefGoogle Scholar
  23. Revol J, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14(3):170–172CrossRefGoogle Scholar
  24. Ripoll M, Holmqvist P, Winkler RG, Gompper G, Dhont JKG, Lettinga MP (2008) Attractive colloidal rods in shear flow. Phys Rev Lett 101:168302–1–4CrossRefGoogle Scholar
  25. Shafiei-Sabet S, Hamad WY, Hatzikiriakos SG (2012) Rheology of nanocrystalline cellulose aqueous suspensions. Langmuir 28:17124–17133CrossRefGoogle Scholar
  26. Sofou S, Muliawan EB, Hatzikiriakos SG, Mitsoulis E (2008) Rheological characterization and constitutive modelling of bread dough. Rheol Acta 47:369–381CrossRefGoogle Scholar
  27. Urena-Benavides EE, Ao G, Davis VA, Kitchens CL (2011) Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions. Macromolecules 44:8990–8998CrossRefGoogle Scholar
  28. Winter HH (2009) Three view of viscoelasticity for Cox–Merz materials. Rheol Acta 48:241–243CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sadaf Shafeiei-Sabet
    • 1
  • Wadood Y. Hamad
    • 2
  • Savvas G. Hatzikiriakos
    • 1
  1. 1.Chemical and Biological EngineeringThe University of British ColumbiaVancouverCanada
  2. 2.FPInnovationsVancouverCanada

Personalised recommendations