Skip to main content
Log in

Shear thickening and shear-induced agglomeration of chemical mechanical polishing slurries using electrolytes

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Chemical mechanical polishing is a fundamental technology used in the semiconductor manufacturing industry to polish and planarize a wide range of materials for the fabrication of microelectronic devices. During the high-shear (∼1,000,000 s−1) polishing process, it is hypothesized that individual slurry particles are driven together to form large agglomerates (≥0.5 µm). These agglomerates are believed to trigger a shear-induced thickening effect and cause defects during polishing. We examined how the addition of various monovalent salts (CsCl, KCl, LiCl, and NaCl) and electrostatic stabilizing bases (KOH, NaOH, or CsOH) influenced the slurry’s thickening behavior. Overall, as the added salt concentration was increased from 0.02 to 0.15 M, the shear rate at which the slurry thickened (i.e., the critical shear rate) decreased. Slurries with added CsCl, NaCl, and LiCl thickened at comparable shear rates (∼20,000–70,000 s−1) and, in general, followed ion hydration theory (poorly hydrated ions caused the slurry to thicken at lower shear rates). However, slurries with added KCl portrayed thickening behavior at higher critical shear rates (∼35,000–100,000 s−1) than other chloride salts. Also, slurries stabilized with CsOH thickened at higher shear rates (∼90,000–140,000 s−1), regardless of the added salt cation or concentration, than the slurries with KOH or NaOH. The NaOH-stabilized slurries displayed thickening at the lowest shear rates (∼20,000 s−1). The thickening dependence on slurry base cation indicates the existence of additional close-range structure forces that are not predicted by the Derjaguin–Landau–Verwey–Overbeek colloidal stability theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allen LH, Matijevic E (1969) Stability of colloidal silica: i. Effect of simple electrolytes. J Colloid Interface Sci 31(3):287–296. doi:10.1016/0021-9797(69)90172-6. ISSN 0021-9797

    Article  CAS  Google Scholar 

  • Amiri A, Oye G, Sjoblom J (2009) Influence of pH, high salinity and particle concentration on stability and rheological properties of aqueous suspensions of fumed silica. Colloids Surf A Physicochem Eng Asp 349(1–3):43–54.

    Article  CAS  Google Scholar 

  • Amiri A, Oye G, Sjoblom J (2012) Stability and flow-induced flocculation of fumed silica suspensions in mixture of water-glycerol. J Dispers Sci Technol 33(8):1247–1256. doi:10.1080/01.9326912010.527811. ISSN 0193-2691

    Article  CAS  Google Scholar 

  • Barnes HA (1989) Shear thickening (dilatancy) in suspensions of non-aggregating solid particles dispersed in Newtonian liquids. J Rheol 33(2):329–366

    Article  CAS  Google Scholar 

  • Basim GB, Moudgil BM (2002) Effect of soft agglomerates on CMP slurry performance. J Colloid Interface Sci 256:137–142

    Article  CAS  Google Scholar 

  • Beazley KM (1980) Industrial aqueous suspensions. Rheometry: industrial applications. Research Studies Press, Chichester

    Google Scholar 

  • Bender JW, Wagner NJ (1995) Optical measurement of the contributions of colloidal forces to the rheology of concentrated suspensions. J Colloid Interface Sci 172(1):171–184

    Article  CAS  Google Scholar 

  • Bender JW, Wagner NJ (1996) Reversible shear thickening in monodisperse and bidisperse colloidal dispersions. J Rheol 40(5):899–916

    Article  CAS  Google Scholar 

  • Bertrand E, Bibette J, Schmittv V (2002) From shear thickening to shear-induced jamming. Phys Rev E 66(6 Part 1):060401. doi:10.1103/PhysRevE.66.060401. ISSN 1539-3755

    Article  CAS  Google Scholar 

  • Binks BP, Lumsdon SO (1999) Stability of oil-in-water emulsions stabilised by silica particles. Phys Chem Chem Phys 1(12):3007–3016. doi:10.1039/a902209k. ISSN 1463-9076

    Article  CAS  Google Scholar 

  • Boersma WH, Laven J, Stein HN (1990) Shear thickening (dilatancy) in concentrated dispersions. AIChe J 36(3):321–332.

    Article  CAS  Google Scholar 

  • Boldridge D (2010) Morphological characterization of fumed silica aggregates. Aerosol Sci Technol 44:182–186.

    Article  CAS  Google Scholar 

  • Bossard F, Sfika V, Tsitsilianis C (2004) Rheological properties of physical gel formed by triblock polyampholyte in salt-free aqueous solutions. Macromolecules 37(10):3899–3904. doi:10.1021/ma0353890. ISSN 0024-9297

    Article  CAS  Google Scholar 

  • Bossis G, Brady JF (1989) The rheology of brownian suspensions. J Chem Phys 91(3):1866–1874.

    Article  CAS  Google Scholar 

  • Brader, JM (2010) Nonlinear rheology of colloidal dispersions. J Phys Condens Matter 22(36):363101

    Article  CAS  Google Scholar 

  • Brady JF, Bossis G (1988) Stokesian dynamics. Ann Rev Fluid Mech 20:111–157

    Article  Google Scholar 

  • Brown E, Jaeger HM (2009) Dynamic jamming point for shear thickening suspensions. Phys Rev Lett 103(8):086001. doi:10.1103/PhysRevLett.103.086001 ISSN 0031-9007

    Article  CAS  Google Scholar 

  • Brown E, Jaeger HM (2012) The role of dilation and confining stresses in shear thickening of dense suspensions. J Rheol 56(4):875–923. doi:10.1122/1.4709423. ISSN 0148-6055

    Article  CAS  Google Scholar 

  • Cates ME, Wittmer JP, Bouchaud JP, Claudin P (1998) Jamming, force chains, and fragile matter. Phys Rev Lett 81(9):1841–1844. doi:10.1103/PhysRevLett.81.1841. ISSN 0031-9007

    Article  CAS  Google Scholar 

  • Cates ME, Haw MD, Holmes CB (2005) Dilatancy, jamming, and the physics of granulation. J Phys Condens Matter 17(24, SI):S2517–S2531. doi:10.1088/0953-8984/17/24/010

    Article  CAS  Google Scholar 

  • Chang FC, Kumar P, Singh R, Balasundaram K, Lee J, Lee J, Singh RK (2011) Role of interparticle forces during stress-induced agglomeration of CMP slurries. Colloids Surf A Physicochem Eng Asp 389(1–3):33–37. doi:10.1016/j.colsurfa.2011.09.001. ISSN 0927-7757

    Article  CAS  Google Scholar 

  • Chapel JP (1994) Electrolyte species-dependent hydration forces between silica surfaces. Langmuir 10(11):4237–4243. doi:10.1021/la00023a053. ISSN 0743-7463

    Article  CAS  Google Scholar 

  • Chen S, Oye G, Sjoblom J (2007) Effect of pH and salt on rheological properties of Aerosil suspensions. J Dispers Sci Technol 28(6):845–853

    Article  CAS  Google Scholar 

  • Choi W, Mahajan U, Lee SM, Abiade J, Singh RK (2004) Effect of slurry ionic salts at dielectric silica CMP. J Electrochem Soc 151(3):G185–G189. doi:10.1149/1.1644609. ISSN 0013-4651

    Article  CAS  Google Scholar 

  • Colic M, Fisher ML, Franks GV (1998) Influence of ion size on short-range repulsive forces between silica surfaces. Langmuir 14(21):6107–6112. doi:10.1021/la980489y. ISSN 0743-7463

    Article  CAS  Google Scholar 

  • Conway BE (1981) Ionic hydration in chemistry and biophysics. Elsevier, New York

    Google Scholar 

  • Crawford NC, Williams SKR, Boldridge D, Liberatore MW (2012) Shear thickening of chemical mechanical polishing slurries under high shear. Rheol Acta 51(7):637–647

    Article  CAS  Google Scholar 

  • Delhommelle J, Petravic J (2005) Shear thickening in a model colloidal suspension. J Chem Phys 123(7). doi:10.1063/1.2007667. ISSN 0021-9606

  • Depasse J (1997) Coagulation of colloidal silica by alkaline cations: surface dehydration or interparticle bridging? J Colloid Interface Sci 194(1):260–262. doi:10.1006/jcis.1997.5120. ISSN 0021-9797

    Article  CAS  Google Scholar 

  • Depasse J, Watillon A (1970) The stability of amorphous colloidal silica. J Colloid Interface Sci 33(3):430–438. ISSN 0021-9797

    Article  Google Scholar 

  • Derjaguin BV, Landau L (1941) Theory of the stability of strongly charged lyophobic sols and the adhesion of strongly charged particles in solution of electrolytes. Acta Physicochimica URSS 14:663

    Google Scholar 

  • D’Haene P, Mewis J, Fuller GG (1993) Scattering dichroism measurements of flow-induced structure of a shear thickening suspension. J Colloid Interface Sci 156(2):350–358

    Article  Google Scholar 

  • Dukhin AS, Goetz PJ (1996) Acoustic and electroacoustic spectroscopy. Langmuir 12(18):4336–4344. doi:10.1021/la951086q

    Article  CAS  Google Scholar 

  • Dukhin AS, Goetz PJ (1998) Characterization of aggregation phenomena by means of acoustic and electroacoustic spectroscopy. Colloids Surf A Physicochem Eng Asp 144(13):49–58. doi:10.1016/S0927-7757(98)00565-2. ISSN 0927-7757

    Article  CAS  Google Scholar 

  • Dukhin AS, Goetz PJ (1999) Characterization of chemical polishing materials (monomodal and bimodal) by means of acoustic spectroscopy. Colloids Surf A Physicochem Eng Asp 158(3):343–354. doi:10.1016/S0927-7757(99)00155-7. ISSN 0927-7757

    Article  CAS  Google Scholar 

  • Eastman J (2005) Colloid stability. Blackwell, Oxford

    Google Scholar 

  • Egres RG, Wagner NJ (2005) The rheology and microstructure of acicular precipitated calcium carbonate colloidal suspensions through the shear thickening transition. J Rheol 49(3):719–746. doi:10.1122/1.1895800. ISSN 0148-6055

    Article  CAS  Google Scholar 

  • Fagan ME, Zukoski CF (1997) The rheology of charge stabilized silica suspensions. J Rheol 41(2):373–397. doi:10.1122/1.550876. ISSN 0148-6055

    Article  CAS  Google Scholar 

  • Fall A, Huang N, Bertrand F, Ovarlez G, Bonn D (2008) Shear thickening of cornstarch suspensions as a reentrant jamming transition. Phys Rev Lett 100(1):018301. doi:10.1103/PhysRevLett.100.018301 ISSN 0031-9007

    Article  CAS  Google Scholar 

  • Feng YJ, Grassl B, Billon L, Khoukh A, Francois J (2002) Effects of NaCl on steady rheological behaviour in aqueous solutions of hydrophobically modified polyacrylamide and its partially hydrolyzed analogues prepared by post-modification. Polym Int 51(10):939–947. doi:10.1002/pi.959. ISSN 0959-8103. Conference on polymers in the 3rd millennium, Montpellier, France, 2–6 September 2001

    Article  CAS  Google Scholar 

  • Franks GV (2002) Zeta potentials and yield stresses of silica suspensions in concentrated monovalent electrolytes: isoelectric point shift and additional attraction. J Colloid Interface Sci 249(1):44–51. doi:10.1006/jcis.2002.8250. ISSN 0021-9797

    Article  CAS  Google Scholar 

  • Franks GV, Zhou Z, Duin NJ, Boger DV (2000) Effect of interparticle forces on shear thickening of oxide suspensions. J Rheol 44(4):759–779. doi:10.1122/1.551111

    Article  CAS  Google Scholar 

  • Gopalakrishnan V, Zukoski CF (2004) Effect of attractions on shear thickening in dense suspensions. J Rheol 48(6):1321–1344. doi:10.1122/1.1784785

    Article  CAS  Google Scholar 

  • Healy TW (1994) Stability of aqueous silica sols. In: Bergna HE, (ed) The colloid chemistry of silica. American Chemical Society, Washington, D.C. doi:10.1021/ba-1994-0234.ch007

  • Hiemenz PC, Rajagopalan R (1997) Principles of colloid and surface chemistry. Marcel Dekker, New York

    Google Scholar 

  • Hoffman RL (1972) Discontinuous and dilatant viscosity behavior in concentrated suspensions. I. Observation of a flow instability. J Rheol 16(1):155–167

    Article  CAS  Google Scholar 

  • Holmes CB, Fuchs M, Cates ME (2003) Jamming transitions in a schematic model of suspension rheology. Europhys Lett 63(2):240–246. doi:10.1209/epl/i2003-00465-1. ISSN 0295-5075

    Article  CAS  Google Scholar 

  • Holmes CB, Cates ME, Fuchs M, Sollich P (2005) Glass transitions and shear thickening suspension rheology. J Rheol 49(1):237–269. doi:10.1122/1.1814114. ISSN 0148-6055

    Article  CAS  Google Scholar 

  • Horn RG (1990) Surface forces and their action in ceramic materials. J Am Ceram Soc 73(5):1117–1135. doi:10.1111/j.1151-2916.1990.tb05168.x ISSN 0002-7820

    Article  CAS  Google Scholar 

  • Horn RG, Smith DT (1990) Measuring surface forces to explore surface chemistry: mica, sapphire, and silica. J Non-Cryst Solids 120(1–3):72–81. doi:10.1016/0022-3093(90)90192-O. ISSN 0022-3093

    Article  CAS  Google Scholar 

  • Horn RG, Smith DT, Haller W (1989) Surface forces and viscosity of water measured between silica sheets. Chem Phys Lett 162(4–5):404–408. doi:10.1016/0009-2614(89)87066-6. ISSN 0009-2614

    Article  CAS  Google Scholar 

  • Iler RK (1979) The chemistry of silica, 3rd edn. Wiley, New York

    Google Scholar 

  • Israelachvili JN (1982) Forces between surfaces in liquids. Adv Colloid Interf Sci 16:31–47. doi:10.1016/0001-8686(82)85004-5. ISSN 0001-8686

    Article  CAS  Google Scholar 

  • Israelachvili JN, Tabor D (1972) The measurement of van der Waals dispersion forces in the range 1.5 to 130 nm. Proc R Soc Lond A 331(1584):19–38

    Article  CAS  Google Scholar 

  • Israelachvili JN, Wennerstrom H (1992) Entropic forces between amphiphilic surfaces in liquids. J Phys Chem 96(2):520–531. doi:10.1021/j100181a007. ISSN 0022-3654

    Article  CAS  Google Scholar 

  • Johnson SB, Scales PJ, Healy TW (1999) The binding of monovalent electrolyte ions on α-alumina. I. Electroacoustic studies at high electrolyte concentrations. Langmuir 15(8):2836–2843. doi:10.1021/la980875f

    Article  CAS  Google Scholar 

  • Johnson ACJH, Greenwood P, Hagstrom M, Abbas Z, Wall S (2008) Aggregation of nanosized colloidal silica in the presence of various alkali cations investigated by the electrospray technique. Langmuir 24(22):12798–12806. doi:10.1021/la8026122. PMID: 18850727

    Article  CAS  Google Scholar 

  • Kaffashi B, O’Brien VT, Mackay ME, Underwood SM (1997) Elastic-like and viscous-like components of the shear viscosity for nearly hard sphere, Brownian suspensions. J Colloid Interface Sci 187(1):22–28

    Article  CAS  Google Scholar 

  • Kamibayashi M, Ogura H, Otsubo Y (2008) Shear-thickening flow of nanoparticle suspensions flocculated by polymer bridging. J Colloid Interface Sci 321(2):294–301

    Article  CAS  Google Scholar 

  • Kjoniksen AL, Hiorth M, Nystrom B (2005) Association under shear flow in aqueous solutions of pectin. Eur Polym J 41(4):761–770. doi:10.1016/j.eurpolymj.2004.11.006. ISSN 0014-3057

    Article  CAS  Google Scholar 

  • Kobayashi M, Juillerat F, Galletto P, Bowen P, Borkovec M (2005) Aggregation and charging of colloidal silica particles: effect of particle size. Langmuir 21(13):5761–5769. doi:10.1021/la046829z. PMID: 15952820

    Article  CAS  Google Scholar 

  • Kosmulski M (1998) Positive electrokinetic charge of silica in the presence of chlorides. J Colloid Interface Sci 208(2):543–545. doi:10.1006/jcis.1998.5859. ISSN 0021-9797

    Article  CAS  Google Scholar 

  • Kosmulski M, Matijevic E (1992) Formation of the surface charge on silica in mixed solvents. Collied Polym Sci 270:1046–1048. doi:10.1007/BF00655975. ISSN 0303-402X

    Article  CAS  Google Scholar 

  • Laun HM (1988) Rheological properties of polymer dispersions with respect to shear-induced particle structures. Progress and trends in rheology II. Steinkopff, Darmstadt, pp 287-290

  • Laun HM, Bung R, Schmidt F (1991) Rheology of extremely shear thickening polymer dispersions (passively viscosity switching fluids). J Rheol 35(6):999–1034

    Article  CAS  Google Scholar 

  • Laun HM, Bung R, Hess S, Loose W, Hess O, Hahn K, Hadicke E, Hingmann R, Schmidt F, Lindner P (1992) Rheological and small-angle neutron-scattering investigation of shear-induced particle structures of concentrated polymer dispersions submitted to plane Poiseuille and Couette flow. J Rheol 36(4):743–787

    Article  CAS  Google Scholar 

  • Lee YS, Wagner NJ (2003) Dynamic properties of shear thickening colloidal suspensions. Rheol Acta 42(3):199–208

    CAS  Google Scholar 

  • Lee JD, So JH, Yang SM (1999) Rheological behavior and stability of concentrated silica suspensions. J Rheol 43(5):1117–1140. doi:10.1122/1.551018

    Article  CAS  Google Scholar 

  • Lootens D, Van Damme H, Hebraud P (2003) Giant stress fluctuations at the jamming transition. Phys Rev Lett 90(17). doi:10.1103/PhysRevLett.90.178301. ISSN 0031-9007

  • Lootens D, van Damme H, Hemar Y, Hebraud P (2005) Dilatant flow of concentrated suspensions of rough particles. Phys Rev Lett 95(26). doi:10.1103/PhysRevLett.95.268302. ISSN 0031-9007

  • Lortz W, Menzel F, Brandes R, Klaessig F, Knothe T, Shibasaki T (2003) News from the M in CMP—viscosity of CMP slurries, a constant? Mater Res Soc Symp Proc 767(1):F1.7.1–F1.7.10

    Google Scholar 

  • Maranzano BJ, Wagner NJ (2001a) The effects of interparticle interactions and particle size on reversible shear thickening: hard-sphere colloidal dispersions. J Rheol 45(5):1205–1222. doi:10.1122/1.1392295. ISSN 0148-6055

    Article  CAS  Google Scholar 

  • Maranzano BJ, Wagner NJ (2001b) The effects of particle size on reversible shear thickening of concentrated colloidal dispersions. J Chem Phys 114(23):10514–10527. doi:10.1063/1.1373687

    Article  CAS  Google Scholar 

  • Maranzano BJ, Wagner JN (2002) Flow-small angle neutron scattering measurements of colloidal dispersion microstructure evolution through the shear thickening transition. J Chem Phys 117(22):10291–10302

    Article  CAS  Google Scholar 

  • Marcelja S, Radic N (1976) Repulsion of interfaces due to boundary water. Chem Phys Lett 42(1):129–130

    Article  CAS  Google Scholar 

  • Matia-Merino L, Tha Goh KK, Singh H (2012) A natural shear-thickening water-soluble polymer from the fronds of the black tree fern, Cyathea medullaris: influence of salt, pH and temperature. Carbohydr Polym 87(1):131–138. doi:10.1016/j.carbpol.2011.07.027. ISSN 0144-8617

    Article  CAS  Google Scholar 

  • Matijevic E, Babu VS (2008) Colloid aspects of chemical-mechanical planarization. J Colloid Interface Sci 320:219–237

    Article  CAS  Google Scholar 

  • Melrose JR, Ball RC (2000) Proceedings of the XIIIth international congress of rheology, Vol. 2

  • Melrose JR, Ball RC (2004) Contact networks in continuously shear thickening colloids. J Rheol 48(5):961–978. doi:10.1122/1.1784784. ISSN 0148-6055

    Article  CAS  Google Scholar 

  • Moinpour M, Tregub A, Oehler A, Cadien K (2002) Advances in characterization of CMP consumables. MRS Bull 27(10):766–771

    Article  CAS  Google Scholar 

  • Molina-Bolivar JA, Ortega-Vinuesa JL (1999) How proteins stabilize colloidal particles by means of hydration forces. Langmuir 15(8):2644–2653. doi:10.1021/la981445s. ISSN 0743-7463

    Article  CAS  Google Scholar 

  • Molina-Bolivar JA, Galisteo-Gonzalez F, Hidalgo-Alvarez R (1999) The role played by hydration forces in the stability of protein-coated particles: non-classical DLVO behaviour. Colloids Surf B: Biointerfaces 14(1–4):3–17. doi:10.1016/S0927-7765(99)00020-X. ISSN 0927-7765

    Article  CAS  Google Scholar 

  • Negi AS, Osuji CO (2009) New insights on fumed colloidal rheology—shear thickening and vorticity-aligned structures in flocculating dispersions. Rheol Acta 48:871–881

    Article  CAS  Google Scholar 

  • O’Brien VT, Mackay ME (2000) Stress components and shear thickening of concentrated hard sphere suspensions. Langmuir 16(21):7931–7938

    Article  CAS  Google Scholar 

  • Osborne M (2011) Only 4.6 % growth expected for the semiconductor industry in 2011, says Gartner. www.fabtech.org/news/a/only_4.6_growth_expected_for_the_semiconductor_industry_in_2011_says_gartne/. Accessed 5 Jan 2011

  • Osuji CO, Kim C, Weitz DA (2008) Shear thickening and scaling of the elastic modulus in a fractal colloidal system with attractive interactions. Phys Rev E77 (6):060402–1

    Article  CAS  Google Scholar 

  • Otsubo Y (1993) Size effects on the shear-thickening behavior of suspensions flocculated by polymer bridging. J Rheol 37(5):799–809. doi:10.1122/1.550464. ISSN 0148-6055

    Article  CAS  Google Scholar 

  • Pashley RM (1981) DLVO and hydration forces between mica surfaces in Li+, Na+, K+, and Cs+ electrolyte solutions—a correlation of double-layer and hydration forces with surface cation-exchange properties. J Colloid Interface Sci 83(2):531–546. doi:10.1016/0021-9797(81)90348-9. ISSN 0021-9797

    Article  CAS  Google Scholar 

  • Pashley RM (1982) Hydration forces between mica surfaces in electrolyte solutions. Adv Colloid Interf Sci 16:57–62. doi:10.1016/0001-8686(82)85006-9. ISSN 0001-8686

    Article  CAS  Google Scholar 

  • Pashley RM, Israelachvili JN (1984) DLVO and hydration forces between mica surfaces in Mg2+, Ca2+, Sr2+, Ba2+ chloride solutions. J Colloid Interface Sci 97(2):446–455. doi:10.1016/0021-9797(84)90316-3. ISSN 0021-9797

    Article  CAS  Google Scholar 

  • Phung T, Brady JF (1992) Microstructured fluids, structure, diffusion and rheology of colloidal dispersions. AIP Conf Proc 256:391

    Article  Google Scholar 

  • Raghavan SR, Khan SA (1997) Shear-thickening response of fumed silica suspensions under steady and oscillatory shear. J Colloid Interface Sci 185(1):57–67. doi:10.1006/jcis.1996.4581. ISSN 0021-9797

    Article  CAS  Google Scholar 

  • Raghavan S, Keswani M, Jia R (2008) Particulate science and technology in the engineering of slurries for chemical mechanical planarization. Kona Powder Part J 26:94–105

    CAS  Google Scholar 

  • Remsen EE, Anjur S, Boldridge D, Kamiti M, Li S, Johns T, Dowell C, Kasthurirangan J, Feeney P (2006) Analysis of large particle count in fumed silica slurries and its correlation with scratch defects generated by CMP. J Electrochem Soc 153(5):G453–G461

    Article  CAS  Google Scholar 

  • Sellitto M, Kurchan J (2005) Shear-thickening and entropy-driven reentrance. Physical Review Letters 95(23):236001. doi:10.1103/Phys-RevLett.95.236001. ISSN 0031-9007

    Article  CAS  Google Scholar 

  • Singh RK, Lee SM, Choi KS, Basim GB, Chen Z, Moudgil BM (2002) Fundamentals of slurry design for CMP of metal and dielectric. MRS Bull 27(11):833. ISSN 0883-7694

    Article  Google Scholar 

  • Smith WE, Zukoski CF (2004) Flow properties of hard structured particle suspensions. J Rheol 48(6):1375–1388

    Article  CAS  Google Scholar 

  • Sonnefeld J, Gobel A, Vogelsberger W (1995) Surface charge density on spherical silica particles in aqueous alkali chloride solutions. Collied Polym Sci 273:926–931. doi:10.1007/BF00.660369. ISSN 0303-402X

    Article  CAS  Google Scholar 

  • Tadros ThF, Lyklema J (1968) Adsorption of potential-determining ions at the silica-aqueous electrolyte interface and the role of some cations. J Electroanal Chem Interfacial Electrochem 17(34):267–275. doi:10.1016/S0022-0728(68)80206-2. ISSN 0022-0728

    Article  CAS  Google Scholar 

  • Tan H, Tam KC, Jenkins RD (2000) Rheological properties of semidilute hydrophobically modified alkali-soluble emulsion polymers in sodium dodecyl sulfate and salt solutions. Langmuir 16(13):5600–5606. doi:10.1021/la991691j. ISSN 0743-7463

    Article  CAS  Google Scholar 

  • Tikhonov AM (2007) Compact layer of alkali ions at the surface of colloidal silica. J Phys Chem C 111(2):930–937. doi:10.1021/jp065538r. ISSN 1932-7447

    Article  CAS  Google Scholar 

  • Torrie GM, Kusalik PG, Patey GN (1989) Theory of the electrical double layer: ion size effects in a molecular solvent. J Chem Phys 91(10):6367–6375. doi:10.1063/1.457404. ISSN 0021-9606

    Article  CAS  Google Scholar 

  • Trompette JL, Clifton MJ (2004) Influence of ionic specificity on the microstructure and the strength of gelled colloidal silica suspensions. J Colloid Interface Sci 276(2):475–482. doi:10.1016/j.jcis.2004.03.040. ISSN 0021-9797

    Article  CAS  Google Scholar 

  • Verwey EG, Overbeek JThG (1948) Theory of the stability of lyophobic colloids. Elsevier, New York

    Google Scholar 

  • Vigil G, Xu Z, Steinberg S, Israelachvili J (1994) Interactions of silica surfaces. J Colloid Interface Sci 165(2):367–385. doi:10.1006/jcis.1994.1242. ISSN 0021-9797

    Article  CAS  Google Scholar 

  • Wachter W, Fernandez S, Buchner R, Hefter G (2007) Ion association and hydration in aqueous solutions of LiCl and Li2SO4 by dielectric spectroscopy. J Phys Chem B 111(30):9010–9017. doi:10.1021/jp072425e

    Article  CAS  Google Scholar 

  • Wagner NJ, Brady JF (2009) Shear thickening in colloidal dispersions. Phys Today 62(10):27–32

    Article  CAS  Google Scholar 

  • White EB, Chellamuthu M, Rothstein JP (2010) Extensional rheology of a shear-thickening cornstarch and water suspension. Rheol Acta 49(2):119–129. doi:10.1007/s00397-009-0415-3. ISSN 0035-4511

    Article  CAS  Google Scholar 

  • Yates DE, Healy TW (1976) The structure of the silica/electrolyte interface. J Colloid Interface Sci 55(1):9–19. doi:10.1016/0021-9797(76)90003-5. ISSN 0021-9797. Papers presented at the 49th national colloid symposium, Clarkson

    Article  CAS  Google Scholar 

  • Yokoyama K, Koike Y, Masuda A, Kawaguchi M (2007) Rheological properties of fumed silica suspensions in the presence of potassium chloride. Japanese J Appl Phys Part 1-Reg Papers Brief Commun Rev Papers 46(1):328–332

    Article  CAS  Google Scholar 

  • Yotsumoto H, Yoon RH (1993a) Application of extended DLVO theory: i. Stability of rutile suspensions. J Colloid Interface Sci 157(2):426–433. doi:10.1006/jcis.1993.1205. ISSN 0021-9797

    Article  CAS  Google Scholar 

  • Yotsumoto H, Yoon RH (1993b) Application of extended DLVO theory. ii. Stability of silica suspensions. J Colloid Interface Sci 157(2):434–441. doi:10.1006/jcis.1993.1206. ISSN 0021-9797

    Article  CAS  Google Scholar 

  • Zebrowski J, Prasad V, Zhang W, Walker LM, Weitz DA (2003) Shake-gels: shear-induced gelation of laponite–PEO mixtures. Colloids Surf A Physicochem Eng Asp 213(2–3):189–197. doi:10.1016/S0927-7757(02)00512-5. ISSN 0927-7757

    Article  CAS  Google Scholar 

  • Zhou Z, Scales PJ, Boger DV (2001) Chemical and physical control of the rheology of concentrated metal oxide suspensions. Chem Eng Sci 56(9):2901–2920. doi:10.1016/S0009-2509(00)00473-5. ISSN 0009-2509

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Science Foundation (CBET-0968042 and DMR-0820518) for providing the funding for this work. Also, we acknowledge Cabot Microelectronics Corporation for supplying the slurries and for allowing us to share our findings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew W. Liberatore.

Additional information

Special issue devoted to novel trends in rheology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crawford, N.C., Yohe, B., Kim, S. et al. Shear thickening and shear-induced agglomeration of chemical mechanical polishing slurries using electrolytes. Rheol Acta 52, 499–513 (2013). https://doi.org/10.1007/s00397-013-0711-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-013-0711-9

Keywords

Navigation