Skip to main content
Log in

Aging, rejuvenation, and thixotropy in yielding magnetorheological fluids

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The yielding behavior of dilute magnetorheological (MR) fluids has been investigated using creep–recovery tests. At very low stress levels, MR fluids behave in the linear viscoelastic regime as demonstrated by the fact that the instantaneous strain equals the instantaneous (elastic) recovery. In this region, gap-spanning field-induced structures support the stress levels applied. Upon increasing the stress value, the MR fluid evolves towards a nonlinear viscoelastic response. Here, the retarded elastic and viscous strain decrease, and the plastic contribution to the instantaneous strain grows probably due to the appearance of unattached field-induced structures. A larger stress value results in a viscoplastic solid behavior with negligible retarded and viscous strain and a fully plastic instantaneous strain. Finally, a plastic fluid behavior is found when the stress value is larger than the so-called yield stress. MR fluids exhibit an intermediate behavior between non-thixotropic (simple) and highly thixotropic model yield stress fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Barnes HA (1999) The yield stress—a review or everything flows. J Non-Newton Fluid Mech 81:133–178

    Article  CAS  Google Scholar 

  • Barnes HA, Nguyen QD (2001) Rotating vane rheometry—a review. J Non-Newton Fluid Mech 98:1–14

    Article  CAS  Google Scholar 

  • Berli CLA, de Vicente J (2012) A structural model for magnetorheology. Appl Phys Lett 101:021903

    Article  Google Scholar 

  • Berli CLA, Quemada D (2000) Rheological modeling of microgel suspensions involving solid–liquid transition. Langmuir 16:7968–7974

    Article  CAS  Google Scholar 

  • Brady JF (1993) The rheological behavior of concentrated colloidal dispersions. J Chem Phys 99:567–581

    Article  CAS  Google Scholar 

  • Chotpattananont D, Sirivat A, Jamieson AM (2006) Creep and recovery behaviors of a polythiophene-based electrorheological fluid. Polymer 47:3568–3575

    Article  CAS  Google Scholar 

  • Christopoulou C, Petekidis G, Erwin B, Cloitre M, Vlassopoulos D (2009) Ageing and yield behavior in model soft colloidal glasses. Phil Trans R Soc A 367:5051–5071

    Article  CAS  Google Scholar 

  • Coussot P, Nguyen QD, Huynh HT, Bonn D (2002) Viscosity bifurcation in thixotropic, yielding fluids. J Rheol 46:573–589

    Article  CAS  Google Scholar 

  • Coussot P, Tabuteau H, Chateau X, Tocquer L, Ovarlez G (2006) Aging and solid or liquid behaviour in pastes. J Rheol 50:975–994

    Article  CAS  Google Scholar 

  • Craciun L, Carreau PJ, Heuzey M-C, van de Ven TGM, Moan M (2003) Rheological properties of concentrated latex suspensions of poly(styrene-butadiene). Rheol Acta 42:410–420

    Article  CAS  Google Scholar 

  • de Vicente J, González-Caballero F, Bossis G, Volkova O (2002) Normal force study in concentrated carbonyl iron magnetorheological suspensions. J Rheol 46(5):1295–1303

    Article  Google Scholar 

  • de Vicente J, Klingenberg DJ, Hidalgo-Álvarez R (2011) Magnetorheological fluids: a review. Soft Matter 7:3701–3710

    Article  Google Scholar 

  • de Vicente J, Stokes JR, Spikes HA (2006) Soft lubrication of model hydrocolloids. Food Hydrocolloids 20:483–491

    Article  Google Scholar 

  • Derec C, Ajdari A, Lequeux F (2001) Rheology and aging: a simple approach. Eur Phys J E 4:355–361

    Article  CAS  Google Scholar 

  • Derec C, Ducouret G, Ajdari A, Lequeux F (2003) Aging and nonlinear rheology in suspensions of polyethylene oxide–protected silica particles. Phys Rev E 67:061403

    Article  Google Scholar 

  • Gutowski IA, Lee D, de Bruyn JR, Frisken BJ (2012) Scaling and mesostructure of Carbopol dispersions. Rheol Acta 51:441–450

    Article  CAS  Google Scholar 

  • Heyes DM, Sigurgeirsson H (2004) The Newtonian viscosity of concentrated stabilized dispersions: comparisons with the hard sphere fluid. J Rheol 48:223–248

    Article  CAS  Google Scholar 

  • Laurati M, Egelhaaf SU, Petekidis G (2011) Nonlinear rheology of colloidal gels with intermediate volume fraction. J Rheol 55:673–706

    Article  CAS  Google Scholar 

  • Li WH, Du H, Chen G, Yeo SH (2002) Experimental investigation of creep and recovery behaviors of magnetorheological fluids. Mater Sci Eng A333:368–376

    CAS  Google Scholar 

  • Moller PCF, Fall A, Bonn D (2009b) Origin of apparent viscosity in yield stress fluids below yielding. Eur Phys Lett 87:38004

    Article  Google Scholar 

  • Moller PCF, Fall A, Chikkadi V, Derks D, Bonn D (2009a) An attempt to categorize yield stress fluid behaviour. Phil Trans R Soc A 367:5139–5155

    Article  Google Scholar 

  • Moller PCF, Mewis J, Bonn D (2006) Yield stress and thixotropy: on the difficulty of measuring yield stress in practice. Soft Matter 2:274–283

    Article  CAS  Google Scholar 

  • Otsubo Y, Edamura K (1994) Creep behavior of electrorheological fluids. J Rheol 38:1721–1733

    Article  CAS  Google Scholar 

  • Petekidis G, Vlassopoulos D, Pusey PN (2003) Yielding and flow of colloidal glasses. Faraday Discuss 123:287–302

    Article  CAS  Google Scholar 

  • Petekidis G, Vlassopoulos D, Pusey PN (2004) Yielding and flow of sheared colloidal glasses. J Phys Condens Matter 16:3955–3963

    Article  Google Scholar 

  • Pham KN, Petekidis G, Vlassopoulos D, Egelhaaf SU, Poon WCK, Pusey PN (2008) Yielding behavior of repulsion- and attraction-dominated colloidal glasses. J Rheol 52(2):649–676

    Article  CAS  Google Scholar 

  • Quemada D (1977) Rheology of concentrated disperse systems and minimum energy dissipation principle I. Viscosity–concentration relationship. Rheol Acta 16(1):82–94

    Article  Google Scholar 

  • Quemada D (1998) Rheological modelling of complex fluids: I. The concept of effective volume fraction revisited. Eur Phys J Appl Phys 1:119–127

    Article  Google Scholar 

  • Quemada D (2008) Aging, rejuvenation, and thixotropy in complex fluids: time-dependence of the viscosity at rest and under constant shear rate or shear stress. Appl Rheol 18:53298

    Google Scholar 

  • See H, Chen R, Keentok M (2004) The creep behaviour of field-responsive fluids. Colloid Polym Sci 282:423–428

    Article  CAS  Google Scholar 

  • Segovia-Gutiérrez JP, Berli CLA, de Vicente J (2012) Non-linear viscoelasticity and two-step yielding in magnetorheology: a colloidal gel approach to understand the effect of particle concentration. J Rheol 56(6):1429–1448

    Article  Google Scholar 

  • Segovia-Gutiérrez JP, de Vicente J, Hidalgo-Alvarez R, Puertas AM (2013) Brownian dynamic simulations in magnetorheology. Soft Matter . doi:10.1039/C3SM00137G

  • Tadros TF (1987) Solid/liquid dispersions. Academic, London, p 293

    Google Scholar 

  • Trappe V, Prasad V, Cipelletti L, Segre PN, Weitz DA (2001) Jamming phase diagram for attractive particles. Nature 411:772–775

    Article  CAS  Google Scholar 

  • Volkova O, Cutillas S, Bossis G (1999) Shear banded flows and nematic-to-isotropic transition in ER and MR fluids. Phys Rev Lett 82:233–236

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by MICI NN MAT 2010-15101 project (Spain), by the European Regional Development Fund (ERDF), and by Junta de Andalucía P10–RNM–6630 and P11–FQM–7074 projects (Spain). CB also acknowledges the financial support from the Universidad Nacional del Litoral and the Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan de Vicente.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Vicente, J., Berli, C.L.A. Aging, rejuvenation, and thixotropy in yielding magnetorheological fluids. Rheol Acta 52, 467–483 (2013). https://doi.org/10.1007/s00397-013-0704-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-013-0704-8

Keywords

Navigation