Skip to main content
Log in

Determination of thermal conductivity of liquids and polymers from batch mixer data

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The paper proposes a new technique allowing the determination of thermal conductivity of liquids and polymer melts with unknown rheological behavior from batch mixer data; the mixing elements can have simple or complex geometries. The simple mixer is represented by an equivalent simple Couette with a cup and a bob having an effective hydrodynamic (or thermal) radius, and the true batch mixer is represented by two adjacent concentric cylinder viscometer. Using the universal internal effective radius, the thermal conductivity for four polymers was estimated from the batch mixer temperature–rotor speed and torque data. A good agreement was found with the values measured by transient line source method and those of the literature. Melt activation energy was calculated from torque–temperature batch mixer data, and the obtained values were found to be consistent with the values extracted from low-amplitude oscillatory shear experiments as well as with the available published data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Afonso IM, Hes L, Maia JM, Melo LF (2003) Heat transfer and rheology of stirred yoghurt during cooling in plate heat exchangers. J Food Eng 57:179–187

    Article  Google Scholar 

  • Ait-Kadi A, Marchal P, Choplin L, Chrissemant AS, Bousmina M (2003) Quantitative analysis of mixer-type rheometers using Couette analogy. CJChE 80:1166–1174

    Google Scholar 

  • Antunes CF, Machado AV, Van Duin M (2009) Degradation of the rubber network during dynamic vulcanization of EPDM/PP blends using phenolic resol. Rubber Chem Technol 82:492–505

    Article  CAS  Google Scholar 

  • Bai Y, Sundararaj U, Nandakumar K (2011) Nonisothermal modeling of heat transfer inside an internal batch mixer. AIChE J 57:2657–2669

    Article  CAS  Google Scholar 

  • Bhadane PA, Tsou AH, Cheng J, Ellul M, Favis BD (2011) Morphology and continuity development in highly reactive nanoscale polymer blends. Polymer 52:5107–5117

    Article  CAS  Google Scholar 

  • Bousmina M, Faisant JB, Aït-Kadi A (1999) Determination of shear rate and viscosity form rotor speed and torque data in batch mixers. J Rheol 43:415–433

    Article  CAS  Google Scholar 

  • Bozarth MJ, Done D (1991) Calculating resin material properties for injection moldfilling software. In: ANTEC’91, pp 2431–2433

  • Cassagnau P, Bounor-Legare V, Fenouillot F (2007) Reactive processing of thermoplastic polymers: a review of the fundamental aspects. Int Polym Process 22:218–258

    CAS  Google Scholar 

  • Filippi S, Madrigali L, Polacco G, Magagnini P, La Mantia FP, Acierno D (2006) Torque-rheometry investigation of model transreactions involving condensation polymers. I. Polyesters. Polym Eng Sci 46:139–152

    Article  CAS  Google Scholar 

  • Fradette L, Thomé G, Tanguy PA, Takenaka K (2007) Power and mixing time study involving a Maxblend ® Impeller with viscous Newtonian. J Non-Newton Fluids 85:1514–1523

    CAS  Google Scholar 

  • Goodrich JE, Porter RS (1967) A rheological interpretation of torque-rheometer data. Polym Eng Sci 7:1–7

    Article  Google Scholar 

  • Hingmann R, Rieger J, Kersting M (1995) Rheological properties of a partially molten polypropylene random copolymer during annealing. Macromolecules 28:3801–3806

    Article  CAS  Google Scholar 

  • Inceoglu F, Ville J, Ghamri N (2011) Correlation between processing conditions and fiber breakage during compounding of glass fiber-reinforced polyamide. Polym Compos 32:1842–1850

    Article  CAS  Google Scholar 

  • Iza M, Bousmina M (2000) Non-linear rheology of immiscible polymer blends: step strain experiments. J Rheol 44:1363–1384

    Article  CAS  Google Scholar 

  • Iza M, Bousmina M, Jerome R (2001) Rheology of compatibilized immiscible viscoelastic polymer blends. Rheol Acta 40:10–22

    Article  CAS  Google Scholar 

  • Lacoste C, Choplin L, Cassagnau P, Michel A (2005) Rheology innovation in the study of mixing conditions of polymer blends during chemical reaction. Appl Rheol 15:314–325

    CAS  Google Scholar 

  • Le Corroller P, Favis BD (2011) Effect of viscosity in ternary polymer blends displaying partial wetting phenomena. Polymer 52:3827–3834

    Article  Google Scholar 

  • Lobo H, Cohen C (1990) Measurement of thermal conductivity of polymer melts by the line-source method. Polym Eng Sci 30:65–70

    Article  CAS  Google Scholar 

  • Lobo H, Newman R (1990) Thermal conductivity of polymers at high temperatures and pressure. ANTEC 90:862–864

    Google Scholar 

  • Lohfink GW, Kamal MR (1993) Morphology and permeability in extruded polypropylene/ethylene-vinyl alcohol copolymer blends. Polym Eng Sci 33(21):1404–1420

    Article  CAS  Google Scholar 

  • Pogodina NV, Cercle C, Averous L, Thomann R, Bouquey M, Muller R (2008) Processing and characterization of biodegradable polymer nanocomposites: detection of dispersion state. Rheol Acta 47:543–553

    Article  CAS  Google Scholar 

  • Ray SS, Vaudreuil S, Maazouz A, Bousmina M (2006) Dispersion of multi-walled carbon nanotubes in biodegradable poly(butylene succinate) matrix. J Nanosci Nanotechnol 6:2191–2195

    Article  CAS  Google Scholar 

  • Ray SS, Bandyopadhyay J, Bousmina M (2007) Effect of orgnaclay on the morphology and properties of PP/PBSA blends. Macromol Mater Eng 292:729–747

    Article  CAS  Google Scholar 

  • Rauwendaal Ch (2001) Polymer extrusion. Hanser, New-York, ISBN US:1-56990-321-2

    Google Scholar 

  • Shahbikian S, Carreau PJ, Heuzey MC (2012) Morphology development of EPDM/PP uncross- linked/dynamically cross-linked blends. Polym Eng Sci 52:309–322

    Article  CAS  Google Scholar 

  • Scott CE, Joung SK (1995) Viscosity ratio effects in the compounding of low viscosity, immiscible fluids into polymeric matrices. In: Polyblends RETEC’95, pp 338–364

  • Teverovskiy M, Manas-Zloczower I, Elemans P (2000) Numerical simulations and experiments in a double-Couette flow geometry. Int Polym Process 15:242–254

    CAS  Google Scholar 

  • Yu W, Zhou CX, Bousmina M (2005) Theory of morphology evolution in mixtures of viscoelastic components. J Rheol 49:215–236

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The author acknowledges the support provided the Academy of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mosto Bousmina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bousmina, M. Determination of thermal conductivity of liquids and polymers from batch mixer data. Rheol Acta 51, 959–967 (2012). https://doi.org/10.1007/s00397-012-0654-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-012-0654-6

Keywords

Navigation