Skip to main content
Log in

Electrical conductivity, phase behavior, and rheology of polypropylene/polystyrene blends with multi-walled carbon nanotube

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The electrical, rheological properties and phase change behavior of polypropylene (PP)/polystyrene (PS) blends filled with multi-walled carbon nanotube (MWNT) were investigated. Two kinds of masterbatch were used to prepare ternary blends of PP, PS, and MWNT, and the effects of the kinds of masterbatch were confirmed by phase morphology of ternary blends and the distribution of MWNT. From thermodynamic analysis, MWNT is expected to locate in PS phase and it shows a good agreement with the TEM observations. The ternary composites show the lowest conductive percolation threshold and fine morphologies when most MWNT particles are located at the interface. Time sweep test were carried out to monitor the phase coalescence of the ternary blends and MWNT migration and agglomeration in the PS phase during annealing. The enhancement of thermal properties of MWNT-filled blends was also investigated by DSC and TGA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ajji A, Choplin L, Prudhomme RE (1988) Rheology and phase separation in Polystyrene/poly(vinyl methyl ether) blends. J Polym Sci, Part B Polym Phys 26:2279–2289

    Article  Google Scholar 

  • Alig I, Skipa T, Lellinger D, Pötschke P (2008) Destruction and formation of a carbon nanotube network in polymer melts: rheology and conducitivity spectroscopy. Polymer 49:3524–3532

    Article  CAS  Google Scholar 

  • Antonucci V, Faiella G, Giordano M, Nicolais L, Pepe G (2007) Electrical properties of single walled carbon nanotube reinforced polystyrene composites. Macromol Symp 247:172–181

    Article  CAS  Google Scholar 

  • Brown PJ, Stevens K (2007) Nanofibers and nanotechnology in textiles. CRC

  • Elias L, Fenouillot F, Majesté JC, Alcouffe P, Cassagnau P (2008) Immiscible polymer blends stabilized with nano-silica particles: rheology and effective interfacial tension. Polymer 49:4378–4385

    Article  CAS  Google Scholar 

  • Gahleitner M, Kretzshmar B, liet GV, Devaux J, Posplech D, Brnreitner K, Ongolic E (2006) Rheology/morphology interactions in polypropylene/polyamide-6 nanocomposites. Rheol Acta 45:322–330

    Article  CAS  Google Scholar 

  • Gubbels F, Jerome R, Vanlathem E, Deltour R, Blacher S, Brouers F (1998) Kinetic and thermodynamic control of the selective localization of carbon black at the interface of immiscible polymer blends. Chem Mater 10:1227–1235

    Article  CAS  Google Scholar 

  • Haggenmueller R, Gommans HH, Rinzler AG, Fischer JE, Winey KI (2000) Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem Phys Lett 330:219–225

    Article  CAS  Google Scholar 

  • Hong JS, Kim YK, Ahn KH, Le SJ, Kim C (2007) Interfacial tension reduction in PBT/PE/clay nanocomposite. Rheol Acta 46:469–478

    Article  CAS  Google Scholar 

  • Hwang TY, Kim HJ, Ahn Y, Lee JW (2010) Influence of twin screw extrusion processing condiction on the properties of polypropylene/multi-walled carbon nanotube nanocomposites. Korea-Aust Rheol J 22:141–148

    Google Scholar 

  • Khatua BB, Lee DJ, Kim HY, Kim JK (2004) Effect of organoclay platelets on morphology of nylon-6 and poly(ethylene-ran-propylene) rubber blends. Macromolecules 37:2454–2459

    Article  CAS  Google Scholar 

  • Kim H, Macosko CW (2009) Porcessing-property relationships of polycarbonate/graphene composites. Polymer 50:3797–3809

    Article  CAS  Google Scholar 

  • Kirkpatrick S (1973) Percolation and conduction. Rev Mod Phys 45:574–588

    Article  Google Scholar 

  • Lee HS, Fasulo PD, Rodgers WD, Paul DR (2005) TPO based nanocomposites. Part 1. Morphology and mechanical properties. Polymer 46:11673–11689

    Article  CAS  Google Scholar 

  • Lozano K, Barrera EV (2001) Nanofiber-reinforced thermoplastic composites. I. Thermoanalytical and mechanical analyses. J Appl Polym Sci 79:125–133

    Article  CAS  Google Scholar 

  • Lyu S, Jones TD, Bates FS, Macosko CW (2002) Role of block copolymers on suppression of droplet coalescence. Macromolecules 35:7845–7855

    Article  CAS  Google Scholar 

  • Macosko CW, Guegan P, Khandpur AK (1996) Compatibilizers for melt blending: premade block copolymers. Macromolecules 29:5590–5598

    Article  CAS  Google Scholar 

  • Nuriel S, Liu L, Barber AH, Wagner HD (2005) Direct measurement of multiwall nanotube surface tension. Chem Phys Lett 404:263–266

    Article  CAS  Google Scholar 

  • Ponomarenko AT, Shevchenko VG, Enikolopyan NS (1990) Formation processes and properties of conducting polymer composites. Advances in polymer science, vol 96. Springer, Berlin, pp 125–147

    Google Scholar 

  • Pötschke P, Bhattacharyya AR, Janke A (2000) Melt mixing of polycarbonate with multiwalled carbon nanotubes: microscopic studies on the state of dispersion. Eur Polym J 40:137–148

    Article  Google Scholar 

  • Pötschke P, Fornes TD, Paul DR (2002) Rheological behavior of multiwalled carbon nanotube/polycarbonate comsites. Polymer 43:3247–3255

    Article  Google Scholar 

  • Pötschke P, Bhattacharyya AR, Janke A (2003) Morphology and electrical resistivity of melt mixed blends of polyethylene and carbon nanotube filled polycarbonate. Polymer 44:8061–8069

    Article  Google Scholar 

  • Pötschke P, Pegel S, Claes M, Bonduel D (2008) A novel strategy to incorporate carbon nanotubes into thermoplastic matrices. Macromol Rapid Commun 29:244–251

    Article  Google Scholar 

  • Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 76:2868–2870

    Article  CAS  Google Scholar 

  • Ray SS, Pouliot S, Bousmina M, Utracki LA (2004) Role of organically modified layered silicate as an active interfacial modifier in immiscible polystyrene/polypropylene blends. Polymer 45:8403–8413

    Article  CAS  Google Scholar 

  • Ray SS, Bandyopadhyay J, Bousmina M (2007) Effect of organoclay on the morphology and properties of poly(propylene)/poly(butylenesuccinate)-coadipate blends. Macromol Mater Eng 292:729–747

    Article  CAS  Google Scholar 

  • Schadler LS, Giannaris SC, Ajayan PM (1998) Load transfer in carbon nanotube epoxy composites. Appl Phys Lett 73:3842–3844

    Article  CAS  Google Scholar 

  • Sircar A, Lamond TG (1978) Effect of carbon black particle size distribution on electrical conductivity. Rubber Chem Technol 51:126–132

    Article  CAS  Google Scholar 

  • Steinmann S, Gronski W, Friedrich C (2002) Influence of selective filling on rheological properties and phase inversion of two-phase polymer blends. Polymer 43:4467–4477

    Article  CAS  Google Scholar 

  • Subramoney S (1998) Novel nanocarbons—structure, properties, and potential applications. Adv Mater 10:1157–1171

    Article  CAS  Google Scholar 

  • Sumita M, Abe H, Kayaki H, Miyasaka K (1986) Effect of melt viscosity and surface tension of polymers on the percolatio threshold of conductive particle filled polymeric composites. J Macromol Sci Phys 25:171–184

    Article  CAS  Google Scholar 

  • Sumita M, Sakata S, Asai S, Miyasaka K, Nakagawa H (1991) Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polym Bull 25:265–271

    Article  CAS  Google Scholar 

  • Sundararaj U, Macosko CW (1995) Drop breakup and coalescence in polymer blends: the effects of concentration and compatibilization. Macromolecules 28:2647–2657

    Article  CAS  Google Scholar 

  • Tiwari RR, Paul DR (2011) Effect of organoclay on the morphology, phase stability and mechanical properties of polypropylene/polystyrene blends original research article. Polymer 52:1141–1154

    Article  CAS  Google Scholar 

  • Utracki LA (1991) On the viscosity–concentration dependence of immiscible polymer blends. J Rheol 35:1615–1637

    Article  CAS  Google Scholar 

  • Winter HH, Mours M (1997) Rheology of polymers near liquid–solid transitions—advances in polymer science, vol 134. Springer, Berlin, pp 165–234

    Google Scholar 

  • Wu J, Xiang F, Han L, Huang T, Wang Y, Peng Y, Wu H (2011) Effects of carbon nanotubes on glass transition and crystallization behaviors in immiscible PS/PP blends. Polym Eng Sci 51:585–591

    Article  CAS  Google Scholar 

  • Wu S (1982) Polymer interface and adhesion. Marcel Dekker, New York

    Google Scholar 

  • Wu M, Shaw L (2006) Electrical and mechanical behaviors of carbon nanotube-filled polymer blends. J Appl Polym Sci 99:477–488

    Article  CAS  Google Scholar 

  • Yang S, Castilleja JR, Barrera EV, Lozano K (2004) Thermal analysis of an acrylonitrile–butadiene–styrene/SWNT composite. Polym Degrad Stab 83:383–388

    Article  CAS  Google Scholar 

  • Yi XS, Wang BX, Pan Y (1997) A method to simultaneously determine the resistivity, volume expansion and temperature relation of filled conductive polymers. J Mater Sci Lett 16:1381–1383

    Article  CAS  Google Scholar 

  • Yoo Y, Park C, Lee SG, Choi KY, Kim DS, Lee JH (2005) Influence of addition of organoclays on morphologies in Nylon6/LLDPE Blends. Macromol Chem Phys 206:878–884

    Article  CAS  Google Scholar 

  • Yoo Y, Cui L, Yoon PJ, Paul DR (2010) Morphology and mechanical properties of rubber toughened amorphous polyamide/MMT nanocomposites. Macromolecules 43:615–624

    Article  CAS  Google Scholar 

  • Yoo Y, Tiwari RR, Yoo YT, Paul DR (2010) Effect of organoclay structure and mixing protocol on the toughening of amorphous polyamide/elastomer blends. Polymer 51:4907–4915

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the BK21 Education and Research Group, and the special grants of Sogang University are gratefully acknowledged. This work is also supported in part by grants of KRICT General Research Program (SI-1104) and Fundamental R&D Program for Core Technology of Materials (No. K006005, Ministry of Knowledge Economy).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youngjae Yoo or Jae Wook Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, T.Y., Yoo, Y. & Lee, J.W. Electrical conductivity, phase behavior, and rheology of polypropylene/polystyrene blends with multi-walled carbon nanotube. Rheol Acta 51, 623–636 (2012). https://doi.org/10.1007/s00397-012-0630-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-012-0630-1

Keywords

Navigation