Skip to main content
Log in

Linear and non-linear viscoelastic properties of ethylene vinyl acetate/nano-crystalline cellulose composites

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

This paper reports on the melt rheological properties of ethylene vinyl acetate containing between 0 and 10 wt.% of nano-crystalline cellulose (NCC). A complete set of rheological tests including frequency sweeps, shear transients, and uniaxial elongations was performed. Frequency sweeps showed that at low frequencies, a pseudo solid-like behavior was obtained for NCC concentrations higher than 5%. This behavior was related to hydrogen bonding between NCC particles and the creation of particle networks as the result of particle–particle interactions. For transient shear tests, all compositions presented a stress overshoot at high shear rates before reaching a steady state. It was found that the amplitude of this overshoot depends on both NCC content and shear rate. On the other hand, the time to reach the maximum was found to be highly shear rate dependent but concentration dependence was rather weak. For uniaxial extensional flow, higher extensional viscosity was observed with increasing NCC content. On the other hand, strain hardening was found to decrease with increasing NCC content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aguayo JP, Tamaddon-Jahromi HR, Webster MF (2006) Extensional response of the pom-pom model through planar contraction flows for branched polymer melts. J Non-Newton Fluid Mech 134(1–3):105–126

    Article  CAS  Google Scholar 

  • Akcora P, Kumar SK, Sakai VG, Li U, Benicewicz BC, Schadler LS (2010a) Segmental dynamics in PMMA-grafted nanoparticle composites. Macromolecules 43(19):8275–8281

    Article  CAS  Google Scholar 

  • Akcora P, Kumar SK , Lewis S, Schadler LS, Li U, Benicewicz BC, Sandy A, Douglas JF, Narayanan S, Ilavsky J, Thiyagarajan P, Colby RH (2010b) Gel-like mechanical reinforcement in polymer nanocomposite melts. Macromolecules 43(2):1003–1010

    Article  CAS  Google Scholar 

  • Azizi MAS, Alloin F, Sanchez JY, Dufresne A (2004a) Cellulose nanocrystals reinforced poly(oxyethylene). Polymer 45(12):4149–4157

    Article  Google Scholar 

  • Azizi MAS, Alloin F, Sanchez JY, El Kissi N, Dufresne A (2004b) Preparation of cellulose whiskers reinforced nanocomposites from an organic medium suspension. Macromolecules 37(4):1386–1393

    Article  Google Scholar 

  • Bogoslovov RB, Roland CM, Ellis AR, Randall AM, Robertson CG (2008) Effect of silica nanoparticles on the local segmental dynamics in poly(vinyl acetate). Macromolecules 41(4):1289–1296

    Article  CAS  Google Scholar 

  • Capadona JR, Van den Berg O, Capadona LA, Schroeter M, Rohan SJ, Tyler DJ, Weder C (2007) Self-assembled nanofiber templates for the preparation of well-dispersed polymer nanocomposites. Nat Nanotechnol 2(12):765–769

    Article  CAS  Google Scholar 

  • Chatterjee T, Krishnamoorti R (2008) Steady shear response of carbon nanotube networks dispersed in poly(ethylene oxide). Macromolecules 41(14):5333–5338

    Article  CAS  Google Scholar 

  • Chauve G, Heux L, Arouini R, Mazeau K (2005) Cellulose poly(ethylene-co-vinyl acetate) nanocomposites studied by molecular modeling and mechanical spectroscopy. Biomacromolecules 6(4):2025–2031

    Article  CAS  Google Scholar 

  • Chazeau L, Cavaille JY, Perez J (2000) Plasticized PVC reinforced with cellulose whiskers. II. Plastic behavior. J Polym Sci, Part B, Polym Phys 38(3):383–392

    Article  CAS  Google Scholar 

  • Dalmas F, Cavaille J-Y, Gauthier C, Chazeau L, Dendievel RM (2007) Viscoelastic behavior and electrical properties of flexible nanofiber filled polymer nanocomposites: influence of processing conditions. Compos Sci Technol 67(5):829–839

    Article  CAS  Google Scholar 

  • Dealy JM (2010) Weissenberg and Deborah numbers—their definition and uses. Rheol Bull 79(2):14–18

    Google Scholar 

  • Dealy JM, Tsang Wm-KW (1981) Structural time dependency in the rheological behavior of molten polymers. J Appl Polym Sci 26(4):1149–1158

    Article  CAS  Google Scholar 

  • Dealy JM, Wissbrun KF (1990) Melt rheology and its role in plastics processing—theory and applications. Van Nostrand Reinhold, New York, pp 237–239

    Book  Google Scholar 

  • Doi M, Edwards SF (1986) Molecular theory for the viscoelasticity of polymeric liquids. In: The theory of polymer dynamics. Clarendon Press, London, pp 218–288

    Google Scholar 

  • Du F, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI (2004) Nanotube networks in polymer nanocomposites: rheology and electrical conductivity. Macromolecules 37(24):9048–9055

    Article  CAS  Google Scholar 

  • Dutta NK, Choudhury NR, Haidar B, Vidal A, Donnet JB, Delmotte L, Chezeau JM (1994) High resolution solid-state NMR investigation of the filler–rubber interaction: 1. High speed H magic-angle spinning NMR spectroscopy in carbon black filled styrene-butadiene rubber. Polymer 35(20):4293–4299

    Article  CAS  Google Scholar 

  • Favier V, Chanzy H, Cavaille JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28(18):6365–6367

    Article  CAS  Google Scholar 

  • Favier V, Canova GR, Shrivastavas C, Cavaille JY (1997) Mechanical percolation in cellulose whisker nanocomposites. Polym Eng Sci 37(10):1732–1739

    Article  CAS  Google Scholar 

  • Giesekus H (1982) A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility. J Non-Newton Fluid Mech 11(1–2):69–109

    Article  CAS  Google Scholar 

  • Goel V, Chatterjee T, Bombalski L, Yurekli K, Matyjaszewski K, Krishnamoorti R (2006) Viscoelastic properties of silica-grafted poly(styrene–acrylonitrile) nanocomposites. J Appl Polym Sci, Part B, Polym Phys 44(14):2014–2023

    Article  CAS  Google Scholar 

  • Gray DG (2008) Transcrystallization of polypropylene at cellulose nanocrystal surfaces. Cellulose 15(2):297–301

    Article  CAS  Google Scholar 

  • Grunert M, Winter WT (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J Polym Environ 10(1–2):27–30

    Article  CAS  Google Scholar 

  • Gupta RK, Pasanovic-Zujo V, Bhattacharya SN (2005) Shear and extensional rheology of EVA/layered silicate-nanocomposites. J Non-Newton Fluid Mech 128(2–3):116–125

    Article  CAS  Google Scholar 

  • Habibi Y, Dufresne A (2009) Highly filled bionanocomposites from functionalized polysaccharide nanocrystals. Biomacromolecules 9(7):1974–1980

    Article  Google Scholar 

  • Habibi Y, Goffin AL, Schiltz N, Duquesne E, Duboisand P, Dufresne A (2008) Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J Mater Chem 41(18):5002–5010

    Article  Google Scholar 

  • Habibi Y, Lucia AL, Orlando JR (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500

    Article  CAS  Google Scholar 

  • Handge UA, Pötschke P (2007) Deformation and orientation during shear and elongation of a polycarbonate/carbon nanotubes composite in the melt. Rheol Acta 46(6):889–898

    Article  CAS  Google Scholar 

  • Hornsby PR (1999) Rheology, compounding and processing of filled thermoplastics. Adv Polym Sci 139:155–217

    Article  CAS  Google Scholar 

  • Huang YY, Ahir SV, Terentjev EM (2006) Dispersion rheology of carbon nanotubes in a polymer matrix. Phys Rev, B Condens Matter 73:1254221–1254229

    Google Scholar 

  • Inoue T, Yamashita Y, Osaki K (2002a) Viscoelasticity of an entangled polymer solution with special attention on a characteristic time for nonlinear behavior. Macromolecules 35(5):1770–1775

    Article  CAS  Google Scholar 

  • Inoue T, Uematsu T, Yamashita Y, Osaki K (2002b) Significance of the longest Rouse relaxation time in the stress relaxation process at large deformation of entangled polymer solutions. Macromolecules 35(12):4718–4724

    Article  CAS  Google Scholar 

  • Kagarise C, Xua J, Wang Y, Mahboob M, Koelling KW, Bechtel SE (2010) Transient shear rheology of carbon nanofiber/polystyrene melt composites. J Non-Newton Fluid Mech 165(3–4):98–109

    Article  CAS  Google Scholar 

  • Kim H, Macosko CW (2008) Morphology and properties of polyester/exfoliated graphite nanocomposites. Macromolecules 41(9):3317–3327

    Article  CAS  Google Scholar 

  • Kloser E, Gray DG (2010) Surface grafting of cellulose nanocrystals with poly(ethylene oxide) in aqueous media. Langmuir 26(160):13450–13456

    Article  CAS  Google Scholar 

  • Letwimolnun W, Vergnes B, Ausias G, Carreau PJ (2007) Stress overshoots of organoclay nanocomposites in transient shear flow. J Non-Newton Fluid Mech 141(2–3):167–179

    Article  CAS  Google Scholar 

  • Liu H, Liu H, Yao F, Wu Q (2010) Fabrication and properties of transparent polymethylmethacrylate/cellulose. Bioresour Technol 101(14): 5685–5692

    Article  CAS  Google Scholar 

  • Ljungberg N, Bonini C, Bortlussi F, Boisson C, Heuex L, Cavaille JY (2005) New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. Biomacromolecules 6(5):2732–2739

    Article  CAS  Google Scholar 

  • Marcovich NE, Auad ML, Bellesi NE, Nutt S, Aranguren MI (2006) Cellulose micro/nanocrystals reinforced polyurethane. J Mater Res 21(4):870–881

    Article  CAS  Google Scholar 

  • Mathew AP, Chakraborty A, Oksman K, Sain M (2006) The structure and mechanical properties of cellulose nanocomposites prepared by twin screw extrusion. In: Oksman K, Sain M (eds) Cellulose nanocomposites: processing, characterization, and properties, ACS Symposium Series 938, American Chemical Society, Washington, DC, pp 114–131

  • McLeish TCB, Larson RG (1998) Molecular constitutive equations for a class of branched polymers: the pom-pom polymer. J Rheol 42(1):81–110

    Article  CAS  Google Scholar 

  • Menezes JD, Siqueira A, Curvelo G, Dufresne A (2009) Extrusion and characterization of functionalized cellulose whiskers. Polymer 50(19):4552–4563

    Article  Google Scholar 

  • Merabia S, Sotta P, Long DR (2008) A microscopic model for the reinforcement and the nonlinear behavior of filled elastomers and thermoplastic elastomers (Payne and Mullins effects). Macromolecules 41(21):8252–8266

    Article  CAS  Google Scholar 

  • Morin A, Dufresne A (2002) Nanocomposites of chitin whiskers from riftia tubes and poly(caprolactone). Macromolecules 35(6):2190–2199

    Article  CAS  Google Scholar 

  • Muenstedt H, Katsikis N, Kaschta J (2008) Rheological properties of poly(methyl methacrylate)/nanoclay composites as investigated by creep recovery in shear. Macromolecules 41(24):9777–9783

    Article  CAS  Google Scholar 

  • Nagase Y, Okada K (1986) Heterogeneous behavior after yielding of solid suspensions. J Rheol 30(6):1123–1143

    Article  CAS  Google Scholar 

  • Nair KG, Dufresne A, Gandini A, Belgacem MN (2003) Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers. Biomacromolecules 4(6):1835–1842

    Article  CAS  Google Scholar 

  • Osaki K, Inoue T, Uematsu T, Yamashita Y (2001) Evaluation methods of the longest relaxation time of an entangled polymer in semidilute solution. J Polym Sci, Part B, Polym Phys 39(14):1704–1712

    Article  CAS  Google Scholar 

  • Palermo E, Si M, Occhiogrosso R, Berndt C, Rudomen G, Rafailovich M (2001) Effects of supercritical carbon dioxide on phase homogeneity, morphology, and mechanical properties of poly(styrene-blend-ethylene-stat-vinyl acetate). Macromolecules 38(22):9180–9186

    Article  Google Scholar 

  • Park JU, Kim JL, Kim DH, Ahn KH, Lee SJ (2006) Rheological behavior of polymer/layered silicate nanocomposites under uniaxial extensional flow. Macromol Res 14(3):318–323

    Article  CAS  Google Scholar 

  • Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49(15):3187–3204

    Article  CAS  Google Scholar 

  • Pearson D, Herbolzheimer E, Grizzuti N, Marrucci G (1991) Transient behavior of entangled polymers at high shear rates. J Polym Sci, Part B, Polym Phys 29(13):1589–1597

    Article  CAS  Google Scholar 

  • Robertson CG, Roland CB (2002) Nonlinear rheology of hyperbranched polyisobutylene. J Rheol 46(1):307–320

    Article  CAS  Google Scholar 

  • Roland CM, Archer LA, Mott PH, Sanchez-Reyes J (2004) Determining Rouse relaxation times from the dynamic modulus of entangled polymers. J Rheol 48(2):395–403

    Article  CAS  Google Scholar 

  • Schroers M, Kokil A, Weder C (2004) Solid polymer electrolytes based on nanocomposites of ethylene oxide–epichlorohydrin copolymers and cellulose whiskers. J Appl Polym Sci 93(6):2883–2888

    Article  CAS  Google Scholar 

  • Sentmanat M (2004) Miniature universal testing platform: from extensional melt rheology to solid-state deformation behavior. Rheol Acta 43(6):657–669

    Article  CAS  Google Scholar 

  • Shweta AP, Simonsen J, Lombardi J (2008) Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes. J Membr Sci 320(1–2):248–258

    Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10(2):425–432

    Article  CAS  Google Scholar 

  • Solomon MJ, Almusallam AS, Seefeldt KF, Thanaroj AS, Varadan P (2001) Rheology of polypropylene/clay hybrid materials. Macromolecules 34(6):1864–1872

    Article  CAS  Google Scholar 

  • Stratton RA, Butcher AF (1973) Stress relaxation upon cessation of steady flow and the overshoot effect of polymer solutions. J Appl Polym Sci 11(9):1747–1758

    CAS  Google Scholar 

  • Twite-Kabamba E, Rodrigue D (2008) The effect of recycling on LDPE foamability: elongational rheology. Polym Eng Sci 48(1):11–18

    Article  Google Scholar 

  • Twite-Kabamba E, Mechraoui A, Rodrigue D (2009) Rheological properties of polypropylene/hemp fibre composites. Polym Compos 30(10):1401–1407

    Article  CAS  Google Scholar 

  • Utracki LA, Jorgensen JL (2002) Dynamic melt flow of nanocomposites based on poly-ε-caprolactam. Rheol Acta 41(5):397–407

    Article  Google Scholar 

  • Utracki LA, Sepehr M, Carreau PJ (2010) Rheology of polymers with nanofillers. In: Utracki LA, Jamieson AM (eds) Polymer physics: from suspensions to nanocomposites and beyond. Wiley, Hoboken, pp 639–708

    Chapter  Google Scholar 

  • Wang Y, Xu J, Bechtel ES, Koelling KW (2006) Melt shear rheology of carbon nanofiber/polystyrene composites. Rheol Acta 45(6):919–941

    Article  CAS  Google Scholar 

  • West AHL, Melrose JR, Ball RC (1994) Computer simulations of the breakup of colloid aggregates. Phys Rev 49(5):4237–4249

    CAS  Google Scholar 

  • Whittle M, Dickinson E (1997) Stress overshoot in a model particle gel. J Chem Phys 107(23):10191–10200

    Article  CAS  Google Scholar 

  • Winter HH, Chambon F (1986) Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J Rheol 30(2):367–383

    Article  CAS  Google Scholar 

  • Wohlfarth C (2001). CRC handbook of thermodynamic data of copolymer solutions. Chapter 6 PVT data of molten copolymers. CRC, New York

    Book  Google Scholar 

  • Xu L, Reeder S, Thopasridharan M, Ren J, Shipp DA, Krishnamoorti R (2005) Structure and melt rheology of polystyrene-based layered silicate nanocomposites. Nanotechnology 16(7):S514–S521

    Article  CAS  Google Scholar 

  • Xu L, Nakajima H, Manias E, Krishnamoorti R (2009) Tailored nanocomposites of polypropylene with layered silicates. Macromolecules 42(11):3795–3803

    Article  CAS  Google Scholar 

  • Zhao J, Morgan AB, Harris JD (2005) Rheological characterization of polystyrene–clay nanocomposites to compare the degree of exfoliation and dispersion. Polymer 46(20):8641–8660

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of NSERC (Natural Sciences and Research Council of Canada) and the Quebec Ministry for Economic Development, Innovation and Exportation (MDEIE) for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Rodrigue.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(DOC 67 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahi, H., Rodrigue, D. Linear and non-linear viscoelastic properties of ethylene vinyl acetate/nano-crystalline cellulose composites. Rheol Acta 51, 127–142 (2012). https://doi.org/10.1007/s00397-011-0603-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-011-0603-9

Keywords

Navigation