Skip to main content
Log in

Deformation and orientation during shear and elongation of a polycarbonate/carbon nanotubes composite in the melt

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

In this study, we focused on the elongational rheology and the morphology of an electrically conductive polycarbonate/multiwalled carbon nanotubes (2 wt%) composite in the melt. In shear and melt elongation, the influence of the carbon nanotubes was large when the externally applied stress was small. Consequently, the elastic interactions resulting from the carbon nanotubes dominated in the low frequency range of the shear oscillations. The elongational viscosity of the composite was only moderately influenced by the addition of 2 wt% carbon nanotubes. Transmission electron microscopy investigations of the stretched composite showed that isolated carbon nanotubes were oriented in elongation. In recovery after melt elongation, the recovered stretch of the composite was much smaller than the recovered stretch of pure polycarbonate. This effect is caused by the carbon nanotubes network, which prohibited large extensions of the macromolecules and led to a yield stress of the composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andrews R, Jacques D, Minot M, Rantell T (2002) Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromol Mater Eng 287:395–403

    Article  CAS  Google Scholar 

  • Breuer O, Sundararaj U (2004) Big returns from small fibers: a review of polymer/carbon nanotubes composites. Polym Compos 25:630–645

    Article  CAS  Google Scholar 

  • Bryning MB, Islam MF, Kikkawa JM, Yodh AG (2005) Very low conductivity threshold in bulk isotropy single-walled carbon nanotube–epoxy composites. Adv Mater 17:1186–1191

    Article  CAS  Google Scholar 

  • Camponeschi E, Florkowski B, Vance R, Garrett G, Garmestani H, Tannenbaum R (2006) Uniform directional alignment of single-walled carbon nanotubes in viscous polymer flow. Langmuir 22:1858–1862

    Article  CAS  Google Scholar 

  • Coleman JN, Khan U, Gunko YK (2006) Mechanical reinforcement of polymers using carbon nanotubes. Adv Mater 18:689–706

    Article  CAS  Google Scholar 

  • Dai H, Hafner JH, Rinzler AG, Colbert DT, Smalley RE (1996) Nanotubes as nanoprobes in scanning probe microscopy. Nature 384:147–150

    Article  CAS  Google Scholar 

  • Du F, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI (2004) Nanotube networks in polymer nanocomposites: rheology and electrical conductivity. Macromolecules 37:9048–9055

    Article  CAS  Google Scholar 

  • Ferry, JD (1980) Viscoelastic properties of polymers (3rd edn). Wiley, New York

    Google Scholar 

  • Freiburg Materials Research Center (Service Group Scientific Data Processing) (2001) NLREG (non-linear-regularization), Software Version Rheology 2.2, August 2001

  • Fry D, Langhorst B, Kim H, Grulke E, Wang H, Hobbie EK (2005) Anisotropy of sheared carbon-nanotube suspensions. Phys Rev Lett 95:038304-1–038304-4

    Article  CAS  Google Scholar 

  • Handge UA, Pötschke P (2004,2005) Interplay of rheology and morphology in melt elongation and subsequent recovery of polystyrene/poly(methyl methacrylate) blends. J Rheol 48:1103–1122, erratum in J Rheol 49:1553

    Article  CAS  Google Scholar 

  • Hobbie EK, Wang H, Kim H, Lin-Gibson S, Grulke EA (2003) Orientation of carbon nanotubes in a sheared polymer melt. Phys Fluids 15:1196–1202

    Article  CAS  Google Scholar 

  • Hough LA, Islam MF, Janmey PA, Yodh AG (2004) Viscoelasticity of single wall carbon nanotube suspensions. Phys Rev Lett 93:168102-1–168102-4

    Article  CAS  Google Scholar 

  • Huang YY, Ahir SV, Terentjev EM (2006) Dispersion rheology of carbon nanotubes in a polymer matrix. Phys Rev B 73:125422-1–125422-9

    Google Scholar 

  • Kim JY, Kim SH (2006) Influence of multiwall carbon nanotube on physical properties of poly(ethylene 2,6-naphthalate) nanocomposites. J Polym Sci B Polym Phys 44:1062–1071

    Article  CAS  Google Scholar 

  • Larson RG (1999) The structure and rheology of complex fluids. Oxford Univ. Press, New York, p 286

    Google Scholar 

  • Lee SB, Teo KBK, Chhowalla M, Hasko DG, Amaratunga GAJ, Milne WI, Ahmed H (2002) Study of multi-walled carbon nanotube structures fabricated by PMMA suspended dispersion. Microelectron Eng 61–62:475–483

    Article  Google Scholar 

  • Lin B, Sundararaj U, Pötschke P (2006) Melt mixing of polycarbonate with multi-walled carbon nanotubes in miniature mixers. Macromol Mater Eng 291:227–238

    Article  CAS  Google Scholar 

  • Lin-Gibson S, Pathak JA, Grulke EA, Wang H, Hobbie EK (2004) Elastic flow instability in nanotube suspensions. Phys Rev Lett 92:048302-1–048302-4

    Google Scholar 

  • Martin CA, Sandler JKW, Shaffer MSP, Schwarz MK, Bauhofer W, Schulte K, Windle AH (2004) Formation of percolating networks in multi-wall carbon-nanotube–epoxy composites. Compos Sci Technol 64:2309–2316

    Article  CAS  Google Scholar 

  • McNally T, Pötschke P, Halley P, Murphy M, Martin D, Bell SEJ, Brennan GP, Bein D, Lemoine P, Quinn JP (2005) Polyethylene multiwalled carbon nanotube composites. Polymer 46:8222–8232

    Article  CAS  Google Scholar 

  • Meincke O, Kaempfer D, Weickmann H, Friedrich C, Vathauer M, Warth H (2004) Mechanical properties and electrical conductivity of carbon–nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymer 45:739–748

    Article  CAS  Google Scholar 

  • Meissner J, Hostettler J (1994) A new elongational rheometer for polymer melts and other highly viscoelastic liquids. Rheol Acta 33:1–21

    Article  CAS  Google Scholar 

  • Mitchell CA, Bahr JL, Arepalli S, Tour JM, Krishnamoorti R (2002) Dispersion of functionalized carbon nanotubes in polystyrene. Macromolecules 35:8825–8830

    Article  CAS  Google Scholar 

  • Ooi YW, Sridhar T (2004) Resistance to uniaxial extensional flow of fibre suspensions. Rheol Acta 43:223–231

    Article  CAS  Google Scholar 

  • Pötschke P, Fornes TD, Paul DR (2002) Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 43:3247–3255

    Article  Google Scholar 

  • Pötschke P, Bhattacharyya AR, Janke A, Goering H (2003) Melt mixing of polycarbonate/multi-wall carbon nanotubes composites. Compos Interfaces 10:389–404

    Article  Google Scholar 

  • Pötschke P, Abdel-Goad M, Alig I, Dudkin S, Lellinger D (2004) Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites. Polymer 45:8863–8870

    Article  CAS  Google Scholar 

  • Pötschke P, Brünig H, Janke A, Fischer D, Jehnichen D (2005) Orientation of multiwalled carbon nanotubes in composites with polycarbonate by melt spinning. Polymer 46:10355–10363

    Article  CAS  Google Scholar 

  • Satapathy BK, Weidisch R, Pötschke P, Janke A (2007) Tough-to-brittle transition in multiwalled carbon nanotube (MWNT)/polycarbonate nanocomposites. Compos Sci Technol 67:867–879

    Article  CAS  Google Scholar 

  • Schmid CF, Switzer LH, Klingenberg DJ (2000) Simulations of fiber flocculations: effects of fiber properties and interfiber friction. J Rheol 44:781–809

    Article  CAS  Google Scholar 

  • Schweizer T (2000) The uniaxial elongational rheometer RME—six years of experience. Rheol Acta 39:428–443

    Article  CAS  Google Scholar 

  • Sennett M, Welsh E, Wright JB, Li WZ, Wen JG, Ren ZF (2003) Dispersion and alignment of carbon nanotubes in polycarbonate. Appl Phys A 76:111–113

    Article  CAS  Google Scholar 

  • Seo MK, Park SJ (2004) Electrical resistivity and rheological behaviors of carbon nanotubes-filled polypropylene composites. Chem Phys Lett 395:44–48

    Article  CAS  Google Scholar 

  • Start PR, Hudson SD, Hobbie EK, Migler KB (2006) Breakup of carbon nanotube flocs in microfluidic traps. J Colloid Interface Sci 297:631–636

    Article  CAS  Google Scholar 

  • Subramoney S (1998) Novel nanocarbons—structure, properties, and potential applications. Adv Mater 10:1157–1171

    Article  CAS  Google Scholar 

  • Switzer III LH, Klingenberg DJ (2003) Rheology of sheared flexible fiber suspensions via fiber-level simulations. J Rheol 47:759–778

    Article  CAS  Google Scholar 

  • Trevelyan BJ, Mason SG (1951) Particle motions in sheared suspensions. I. Rotations. J Colloid Sci 6:354–367

    Article  CAS  Google Scholar 

  • Wang Y, Xu J, Bechtel SE, Koelling KW (2006) Melt shear rheology of carbon nanofiber/polystyrene composites. Rheol Acta 45:919–941

    Article  CAS  Google Scholar 

  • Xu J, Chatterjee S, Koelling KW, Wang Y, Bechtel SE (2005) Shear and extensional rheology of carbon nanofiber suspensions. Rheol Acta 44:537–562

    Article  CAS  Google Scholar 

  • Zhang Q, Lippits DR, Rastogi S (2006a) Dispersion and rheological aspects of SWNTs in ultrahigh molecular weight polyethylene. Macromolecules 39:658–666

    Article  CAS  Google Scholar 

  • Zhang Q, Rastogi S, Chen D, Lippits D, Lemstra PJ (2006b) Low percolation threshold in single-walled carbon nanotube/high density polyethylene composites prepared by melt processing technique. Carbon 44:778–785

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Polymer Service GmbH (Merseburg, Germany) for the TEM investigations and Professors Chr. Friedrich, J. Meissner, H.C. Öttinger, and M. Wagner for very valuable discussions. The continuous support of J. Hostettler, F. Mettler, and W. Schmidheiny is gratefully acknowledged. We also thank H. Kunath for the extraction experiments, P. Treppe, and D. Voigt for the gel permeation chromatography analysis, Dr. J. Pionteck for the density measurements, and K. Arnhold and L. Häußler for the differential scanning calorimetry investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. A. Handge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Handge, U.A., Pötschke, P. Deformation and orientation during shear and elongation of a polycarbonate/carbon nanotubes composite in the melt. Rheol Acta 46, 889–898 (2007). https://doi.org/10.1007/s00397-007-0179-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-007-0179-6

Keywords

Navigation