Skip to main content
Log in

Rheological properties of aqueous solutions of cetylpyridinium chloride in the presence of sodium chlorate

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

We have studied the effect of salt content on the linear viscoelastic properties of wormlike micelles formed from cetylpyridinium chloride in the presence of the nonpenetrating inorganic salt, sodium chlorate. Rotational rheometry and oscillatory squeeze flow were used to determine the shear moduli G and G in the angular frequency range from 0.1 rad s − 1 up to 104 rad s − 1. From G and G data, we deduce the zero-shear viscosity η 0, relaxation time T R and plateau modulus G 0. With regard to increasing salt concentration, at fixed surfactant concentrations of 0.3 and 0.6 M, we observe a maximum of η 0 as well as of T R, whereas G 0 increases continuously with ionic strength. This result is different from that obtained by Cappelaere and Cressely (Rheol Acta 39:346–353, 2000), who studied the same salt/surfactant system. They report a strong decrease of G 0 with ionic strength at salt concentrations higher than that corresponding to the viscosity maximum and explained this decrease by a progressive diminution of the micellar length. We expect an inaccuracy of their oscillatory shear measurements in the high-frequency regime (100 < ω < 250 rad s − 1) to be responsible for an incorrect estimation of G 0 and, consequently, a flawed interpretation of the viscosity decline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Appell J, Porte G, Khatory A, Kern F, Candau SJ (1992) Static and dynamic properties of a network of wormlike surfactant micelles (cetylpyridinium chlorate in sodium chlorate brine). J Phys II 2(5):1045–1052

    Article  CAS  Google Scholar 

  • Bernheim-Groswasser A, Zana R, Talmon Y (2000) Sphere-to-cylinder transition in aqueous micellar solution of a dimeric (gemini) surfactant. J Phys Chem, B 104(17):4005–4009

    Article  CAS  Google Scholar 

  • Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids. Fluid dynamics, vol 1, 2nd edn. Wiley, New York, p 784

    Google Scholar 

  • Candau SJ, Khatory A, Lequeux F, Kern F (1993) Rheological behaviour of wormlike micelles: effect of salt content. J Phys IV 3:197–209

    Article  CAS  Google Scholar 

  • Cappelaere E, Cressely R (1998) Rheological behavior of an elongated micellar solution at low and high salt concentrations. Colloid Polym Sci 276:1050–1056

    Article  CAS  Google Scholar 

  • Cappelaere E, Cressely R (2000) Influence of NaClO3 on the rheological behaviour of a micellar solution of CPCl. Rheol Acta 39:346–353

    Article  CAS  Google Scholar 

  • Cates ME (1987) Reptation of living polymers: dynamics of entangled polymers in the presence of reversible chain-scission reactions. Macromolecules 20:2289–2296

    Article  CAS  Google Scholar 

  • Cates ME (1988) Dynamics of living polymers and flexible surfactant micelles: scaling laws for dilution. J Phys 49:1593–1600

    Article  Google Scholar 

  • Clausen T, Vinson PK, Minter JR, Davis HT, Talmon Y, Miller WG (1992) Viscoelastic micellar solutions: microscopy and rheology. J Phys Chem 96(1):474–484

    Article  CAS  Google Scholar 

  • Crassous JJ, Regisser R, Ballauff M, Willenbacher N (2005) Characterization of the viscoelastic behavior of complex fluids using the piezoelastic axial vibrator (PAV). J Rheol 49:851–863

    Article  CAS  Google Scholar 

  • Croce V, Cosgrove T, Maitland G, Hughes T, Karlsson G (2003) Rheology, cryogenic transmission electron spectroscopy, and small-angle neutron scattering of highly viscoelastic wormlike micellar solutions. Langmuir 19:8536–8541

    Article  CAS  Google Scholar 

  • Danino D, Talmon Y, Levy H, Beinert G, Zana R (1995) Branched threadlike micelles in an aqueous solution of a trimeric surfactant. Science 269(5229):1420–1421

    Article  CAS  Google Scholar 

  • In M, Warr GG, Zana R (1999) Dynamics of branched threadlike micelles. Phys Rev Lett 83:2278–2281

    Article  CAS  Google Scholar 

  • Karaborni S, Esselink K, Hilbers PAJ, Smit B, Karthauser J, van Os NM, Zana R (1994) Simulating the self-assembly of Gemini (Dimeric) surfactants. Science 266(5183):254–256

    Article  CAS  Google Scholar 

  • Kern F, Lequeux F, Zana R, Candau SJ (1994) Dynamical properties of salt-free viscoelastic micellar solutions. Langmuir 10:1714–1723

    Article  CAS  Google Scholar 

  • Khatory A, Lequeux F, Kern F, Candau SJ (1993) Linear and nonlinear viscoelasticity of semidilute solutions of wormlike micelles at high salt content. Langmuir 9:1456–1464

    Article  CAS  Google Scholar 

  • Kirschenmann L (2003) Institut fur Dynamische Materialprufung. Thesis, University of Ulm.

  • Kuperkar K, Abezgauz L, Danino D, Verma G (2008) Viscoelastic micellar water/CTAB/NaNO(3) solutions: rheology, SANS and cryo-TEM analysis. J Colloid Interface Sci 323:403–409

    Article  CAS  Google Scholar 

  • Lequeux F (1992) Reptation of connected wormlike micelles. Europhys Lett 19(8):675–681.

    Article  CAS  Google Scholar 

  • Oelschlaeger C, Schopferer M, Scheffold F, Willenbacher N (2009) Linear-to-branched micelles transition: a rheometry and diffusing wave spectroscopy (DWS) study. Langmuir 25:716–723

    Article  CAS  Google Scholar 

  • Oelschlaeger C, Suwita P, Willenbacher N (2010) Effect of counterion binding efficiency on structure and dynamics of wormlike micelles. Langmuir 26(10):7045–7053

    Article  CAS  Google Scholar 

  • Porte G, Appell J (1984) In: Mittal KL, Lindman B (eds) Surfactants in solution, vol. 2. Plenum, New York, p 805

    Google Scholar 

  • Raghavan SR, Kaler EW (2001) Highly viscoelastic wormlike micellar solutions formed by cationic surfactants with long unsaturated tails. Langmuir 17:300-306

    Article  CAS  Google Scholar 

  • Rehage H, Hoffmann H (1988) Rheological properties of viscoelastic surfactant systems. J Phys Chem 92(16):4712–4719

    Article  CAS  Google Scholar 

  • Schubert, BA, Kaler EW, Wagner NJ (2003) The microstructure and rheology of mixed cationic/anionic wormlike micelles. Langmuir 19:4079–4089

    Article  CAS  Google Scholar 

  • Schubert BA, Kaler EW, Wagner NJ, Raghavan SR (2004) Shear-induced phase separation in solutions of wormlike micelles. Langmuir 20:3564–3573

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank V. Parvez Singh (Indian Institute of Technology Delhi) for his contribution in the squeeze flow measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Oelschlaeger.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 117 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oelschlaeger, C., Willenbacher, N. Rheological properties of aqueous solutions of cetylpyridinium chloride in the presence of sodium chlorate. Rheol Acta 50, 655–660 (2011). https://doi.org/10.1007/s00397-011-0548-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-011-0548-z

Keywords

Navigation