Skip to main content
Log in

Rheological and morphological properties of PA6/ECO nanocomposites

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Polyamide-6/poly(epichlorohydrin - co - ethylene oxide) (PA6/ECO) nanocomposites were prepared with 6 wt.% organoclay and different ECO content from 5 to 40 wt.%, via two-step melt blending process. The effects of organoclay and rubber content on the morphological and rheological properties of samples have been studied. Samples have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and rheometry in small amplitude oscillatory shear. XRD results indicate that the nanoclay platelets are partially exfoliated in both PA6 and ECO phases. The higher rubber content of nanocomposite samples results in higher exfoliation degree of the nanoclay layers. SEM photomicrographs of samples show that the size of rubber droplets increases by the introducing of nanoclay. Oscillatory shear measurements show that the storage modulus of nanocomposite samples significantly increases in comparison with unfilled blends. The formation of physical network is the prime cause of such increase. Moreover, presence of nanoclay dramatically increases melt yield stress of the samples. Palierne emulsion model has been applied to predict the rheological behavior of unfilled blends. A quantitative agreement between Palierne model and those of experimental data is found for low ECO content samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Agarwal S, Salovey R (1995) Model filled polymers. XV: the effects of chemical interactions and matrix molecular weight on rheology. Polym Eng Sci 35:1241–1251

    Article  CAS  Google Scholar 

  • Aubry T, Razafinimaro T, Médéric P (2005) Rheological investigation of the melt state elastic and yield properties of a polyamide-12 layered silicate nanocomposite. J Rheol 49:425–440

    Article  CAS  ADS  Google Scholar 

  • Ayyer RK, Leonov AI (2004) Comparative rheological studies of polyamide-6 and its low loaded nanocomposite based on layered silicates. Rheol Acta 43:283–292

    Article  CAS  Google Scholar 

  • Bardollet P, Bousmina M, Muller R (1995) Relationship between structure and rheological properties in the melt of polymers containing spherical inclusions. Polym Adv Technol 6:301–308

    Article  CAS  Google Scholar 

  • Bousmina M, Mullera R (1993) Linear viscoelasticity in the melt of impact PMMA. Influence of concentration and aggregation of dispersed rubber particles. J Rheol 37:663–679

    Article  CAS  ADS  Google Scholar 

  • Bousmina M, Bataille P, Sapieha S, Schreiber HP (1995) Comparing the effect of corona treatment and block copolymer addition on rheological properties of polystyrene/polyethylene blends. J Rheol 39:499–517

    Article  CAS  ADS  Google Scholar 

  • Carreau PJ, De-Kee DCR, Chhabra RP (1997) Rheology of polymeric systems: principles and applications. Hanser, Munich

    Google Scholar 

  • Cassagnau P, Melis F (2003) Non-linear viscoelastic behaviour and modulus recovery in silica filled polymers. Polymer 44:6607–6615

    Article  CAS  Google Scholar 

  • Chavarria F, Paul DR (2004) Comparison of nanocomposites based on nylon 6 and nylon 66. Polymer 45:8501–8515

    Article  CAS  Google Scholar 

  • Dick JS (2001) Rubber technology: compounding and testing for performance. Hanser, New York

    Google Scholar 

  • Filippone G, Dintcheva NT, Acierno D, La Mantia FP (2008) The role of organoclay in promoting co-continuous morphology in high-density poly(ethylene)/poly(amide) 6 blends. Polymer 49:1312–1322

    Article  CAS  Google Scholar 

  • Fornes TD, Yoon PJ, Hunter DL, Keskkula H, Paul DR (2002) Effect of organoclay structure on nylon 6 nanocomposite morphology and properties. Polymer 43:5915–5933

    Article  CAS  Google Scholar 

  • Gahleitner M, Kretzschmar B, Vliet GV, Devaux J, Pospiech D, Bernreitner K, Ingolic E (2006) Rheology/morphology interactions in polypropylene/polyamide-6 nanocomposites. Rheol Acta 45:322–330

    Article  CAS  Google Scholar 

  • Galgali G, Ramesh C, Lele A (2001) A Rheological study on the kinetics of hybrid formation in polypropylene nanocomposites. Macromolecules 34:852–858

    Article  CAS  ADS  Google Scholar 

  • Graebling D, Muller R (1990) Rheological behavior of polydimethylsiloxane/polyoxyethylene blends in the melt. Emulsion model of two viscoelastic liquids. J Rheol 34:193–205

    Google Scholar 

  • Graebling D, Muller R, Palierne JF (1993) Linear viscoelastic behavior of some incompatible polymer blends in the melt. Interpretation of data with a model of emulsion of viscoelastic liquids. Macromolecules 26:320–329

    Article  CAS  ADS  Google Scholar 

  • Han CD, Chuang HK (1985) Criteria for rheological compatibility of polymer blends. J Appl Polym Sci 30:4431–4454

    Article  CAS  Google Scholar 

  • Hong JS, Kim YK, Ahn KH, Lee SJ, Kim C (2007) Interfacial tension reduction in PBT/PE/clay nanocomposite. Rheol Acta 46:469–478

    Article  CAS  Google Scholar 

  • Huitric J, Ville J, Mederic P, Moan M, Aubry T (2009) Rheological, morphological and structural properties of PE/PA/nanoclay ternary blends: effect of clay weight fraction. J Rheol 53:1101–1119

    Article  CAS  ADS  Google Scholar 

  • Jang BN, Costache M, Wilkie CA (2005) The relationship between thermal degradation behavior of polymer and the fire retardancy of polymer/clay nanocomposites. Polymer 46:10678–10687

    Article  CAS  Google Scholar 

  • Kashiwagi T, Mu M, Winey K, Cipriano B, Raghavan SR (2008) Relation between the viscoelastic and flammability properties of polymer nanocomposite. Polymer 49:4358–4368

    Article  CAS  Google Scholar 

  • Kohan MI (1995) Nylon plastic handbook. Hanser, Munich

    Google Scholar 

  • Krishnamoorti R, Giannelis EP (1997) Rheology of end-tethered polymer layered silicate nanocomposites. Macromolecules 30:4097–4102

    Article  CAS  ADS  Google Scholar 

  • Lertwimolnun W, Vergnes B (2005) Influence of compatibilizer and processing conditions on the dispersion of nanoclay in a polypropylene matrix. Polymer 46:3462–3471

    Article  CAS  Google Scholar 

  • Letwimolnun W, Vergnes B, Ausias G, Carreau PJ (2007) Stress overshoots of organoclay nanocomposites in transient shear flow. J Non-Newtonian Fluid Mech 141:167–179

    Article  CAS  Google Scholar 

  • Lim YT, Park OO (2001) Phase morphology and rheological behavior of polymer/layered silicate nanocomposites. Rheol Acta 40:220–229

    Article  CAS  Google Scholar 

  • Marguerat F, Carreau PJ, Michel A (2002) Morphology and rheological properties of polypropylene/reactive elastomer blends. Polym Eng Sci 42:1941–1955

    Article  CAS  Google Scholar 

  • Naderi G, Lafleur PG, Dubois C (2008) The influence of matrix viscosity and composition on the morphology, rheology, and mechanical properties of thermoplastic elastomer nanocomposites based on EPDM/PP. Polym Compos 29:1301–1309

    Article  CAS  Google Scholar 

  • Naderi G, Razavi-Nouri M, Taghizadeh E, Lafleur PG, Dubois C (2010) Preparation of thermoplastic elastomer nanocomposites based on polyamide-6/polyepichlorohydrin-co-ethylene oxide. Polym Eng Sci. doi:10.1002/pen.21824

    Google Scholar 

  • Pal R (2000) Linear viscoelastic behavior of multiphase dispersions. J Colloid Interface Sci 232:50–63

    Article  CAS  PubMed  Google Scholar 

  • Palierne JE (1990) Linear rheology of viscoelastic emulsions with interfacial tension. Rheol Acta 29:204–214

    Article  CAS  Google Scholar 

  • Pandey JK, Reddy KR, Kumar AP, Singh RP (2005) An overview on the degradability of polymer nanocomposites. Polym Degrad Stab 88:234–250

    Article  CAS  Google Scholar 

  • Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204

    Article  CAS  Google Scholar 

  • Pavlidou S, Papaspyrides CD (2008) A review on polymer-layered silicate nanocomposites. Prog Polym Sci 33:1119–1198

    Article  CAS  Google Scholar 

  • Rastogi AK, Pierre LES (1969) Interfacial phenomena in macromolecular systems III. The surface free-energies of polyethers. J Colloid Interface Sci 31:168–175

    Article  CAS  Google Scholar 

  • Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641

    Article  CAS  Google Scholar 

  • Ren J, Silva AS, Krishnamoorti R (2000) Linear viscoelasticity of disordered polystyrene-polyisoprene block copolymer based layered-silicate nanocomposites. Macromolecules 33:3739–3746

    Article  CAS  ADS  Google Scholar 

  • Rodlert M, Plummer CJG, Garamszegi L, Leterrier Y, Grunbauer HJM, Manson JAE (2004) Hyperbranched polymer/montmorillonite clay nanocomposites. Polymer 45:949–960

    Article  CAS  Google Scholar 

  • Rohlmann CO, Failla MD, Quinzani LM (2006) Linear viscoelasticity and structure of polypropylene-montmorillonite nanocomposites. Polymer 47:7795–7804

    Article  CAS  Google Scholar 

  • Romeo G, Filippone G, Fernández-Nieves A, Russo P, Acierno D (2008) Elasticity and dynamics of particle gels in non-Newtonian melts. Rheol Acta 47:989–997

    Article  CAS  Google Scholar 

  • Rosedale JH, Bates FS (1990) Rheology of ordered and disordered symmetric poly(ethylenepropylene)-poly(ethylethylene) diblock copolymers. Macromolecules 23:2329–2338

    Article  CAS  ADS  Google Scholar 

  • Sailer C, Handge UA (2007) Melt viscosity, elasticity, and morphology of reactively compatibilized polyamide 6/styrene-acrylonitrile blends in shear and elongation. Macromolecules 40:2019–2028

    Article  CAS  ADS  Google Scholar 

  • Shi D, Ke Z, Yang J, Gao Y, Wu J, Yin J (2002) Rheology and morphology of reactively compatibilized PP/PA6 blends. Macromolecules 35:8005–8012

    Article  CAS  ADS  Google Scholar 

  • Sikdar D, Katti DR, Katti KS, Bhowmik R (2006) Insight into molecular interactions between constituents in polymer clay nanocomposites. Polymer 47:5196–5205

    Article  CAS  Google Scholar 

  • Son Y (2001) Measurement of interfacial tension between polyamide-6 and poly(styrene-co-acrylonitrile) by breaking thread method. Polymer 42:1287–1291

    Article  CAS  Google Scholar 

  • Utracki LA, Jorgesen JL (2002) Dynamic melt flow of nanocomposites based on poly-ε-caprolactam. Rheol Acta 41:394–407

    Article  CAS  Google Scholar 

  • Vaia RA, Jandt KD, Kramer EJ, Giannelis EP (1995) Kinetics of polymer melt intercalation. Macromolecules 28:8080–8085

    Article  CAS  ADS  Google Scholar 

  • Vinogradov GC, Malkin AY, Plotnikova EP, Sabsai OU, Nikolayava NE (1972) Viscoelastic properties of filled polymers. Intern J Polymeric Mater 2:1–27

    Article  Google Scholar 

  • Wu S (1982) Polymer interface and adhesion. Marcel & Dekker, New York

    Google Scholar 

  • Xu B, Zheng Q, Song Y, Shangguan Y (2006) Calculating barrier properties of polymer/clay nanocomposites: effects of clay layers. Polymer 47:2904–2910

    Article  CAS  Google Scholar 

  • Zhang J, Jiang DD, Wilkie CA (2006) Fire properties of styrenic polymer-clay nanocomposites based on an oligomerically-modified clay. Polym Degrad Stab 91:358–366

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Taghizadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taghizadeh, E., Naderi, G. & Dubois, C. Rheological and morphological properties of PA6/ECO nanocomposites. Rheol Acta 49, 1015–1027 (2010). https://doi.org/10.1007/s00397-010-0476-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-010-0476-3

Keywords

Navigation