Skip to main content
Log in

Elasticity and dynamics of particle gels in non-Newtonian melts

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

We investigate the relation between the structure and the viscoelastic behavior of a model polymer nanocomposite system based on a mixture of titanium dioxide (TiO2) nanoparticles and polypropylene. Above a critical volume fraction, Φ c, the elasticity of the hybrids dramatically increases, and the frequency dependence of the elastic and viscous moduli reflects the superposition of the independent responses of the suspending polymer melt and of an elastic particle network. In addition, the elasticity of the hybrids shows critical behavior around Φ c. We interpret these observations by hypothesizing the formation of a transient network, which forms due to crowding of particle clusters. Consistent with this interpretation, we find a long-time, Φ-dependent, structural relaxation, which emphasizes the transient character of the structure formed by the particle clusters. For times below this characteristic relaxation time, the elasticity of the network is Φ-independent and reminiscent of glassy behavior, with the elastic modulus, G, scaling with frequency, ω, as Gω 0.3. We expect that our analysis will be useful for understanding the behavior of other complex fluids where the elasticity of the components could be superimposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arbabi S, Sahimi M (1993) Mechanics of disordered solids. I. Percolation on elastic networks with central forces. Phys Rev Lett 47:695–702

    Google Scholar 

  • Barnes HA (2003) A review of the rheology of filled viscoelastic systems. In: Binding DM, Walters K (eds) Rheology reviews 2003, vol 1. British Society of Rheology, Aberystwyth, Wales, pp 1–36

  • Buscall R, McGowan IJ, Mumme-Young CA (1990) Rheology of weakly interacting colloidal particles at high concentration. Faraday Discuss Chem Soc 90:115–127

    Article  CAS  Google Scholar 

  • Cipelletti L, Manley S, Ball RC, Weitz DA (2000) Universal aging features in restructuring of fractal colloidal gels. Phys Rev Lett 84(10):2275–2278

    Article  CAS  Google Scholar 

  • De Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, New York

    Google Scholar 

  • Doremus P, Piau JM (1991) Yeld stress fluid. Structural model and transient shear flow behaviour. J Non-Newtonian Fluid Mech 39:335–352

    Article  CAS  Google Scholar 

  • Gleissle W, Hochstein B (2003) Validity of the Cox–Merz rule for concentrated suspensions. J Rheol 47(4):897–910

    Article  CAS  Google Scholar 

  • Inoubli R, Dagréou S, Lapp A, Billon L, Peyrelasse J (2006) Nanostructure and mechanical properties of polybutylacrylate filled with grafted silica particles. Langmuir 22:6683–6689

    Article  CAS  Google Scholar 

  • Israelachvili J (1985) Intermolecular and surface forces. Academic, London

    Google Scholar 

  • Kantor Y, Webman I (1984) Elastic properties of random percolating systems. Phys Rev Lett 52:1891–1894

    Article  Google Scholar 

  • Krall HA, Weitz DA (1998) Internal dynamics and elasticity of fractal colloidal gels. Phys Rev Lett 80:778–781

    Article  CAS  Google Scholar 

  • Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, New York

    Google Scholar 

  • Leonov AI (1990) On the rheology of filled polymers. J Rheol 34(7):1039–1067

    Article  Google Scholar 

  • Mason TG, Weitz DA (1995) Linear viscoelasticity of colloidal hard sphere suspensions near the glass transition. Phys Rev Lett 75:2770–2773

    Article  CAS  Google Scholar 

  • Mead DW (1994) Numerical interconversion of linear viscoelastic material functions. J Rheol 38(6):1769–1795

    Article  CAS  Google Scholar 

  • Mead DW (1996) Component predictions and the relaxation spectrum of the double reptation mixing rule for polydisperse linear flexible polymers. J Rheol 40(4):633–662

    Article  CAS  Google Scholar 

  • Plischke M, Vernon DC, Joós B, Zhou Z (1999) Entropic rigidity of randomly diluted two-and three-dimensional networks. Phys Rev E 60:3129–3135

    Article  CAS  Google Scholar 

  • Potanin AA, De Rooij R, van den Ende D, Mellema J (1995) Microrheological modeling of weakly aggregated dispersions. J Chem Phys 102:5845–5853

    Article  CAS  Google Scholar 

  • Prasad V, Trappe V, Dinsmore AD, Segrè PN, Cipelletti L, Weitz DA (2003) Universal features of the fluid to solid transition for attractive colloidal particles. Faraday Discuss 123:1–12

    Article  CAS  Google Scholar 

  • Pusey PN, van Mengen W (1986) Phase behaviour of concentrated suspensions of nearly hard colloidal spheres. Nature 320:340–342

    Article  CAS  Google Scholar 

  • Ren J, Silva AS, Krishnamoorti R (2000) Linear viscoelasticity of disordered polystyrene-polyisoprene block copolymer based layered-silicate nanocomposites. Macromolecules 33(10):3739–3746

    Article  CAS  Google Scholar 

  • Rueb CJ, Zukoski CF (1997) Viscoelastic properties of colloidal gels. J Rheol 41:197–218

    Article  CAS  Google Scholar 

  • Russel WB, Saville DA, Schowalter WR (1989) Colloidal dispersions. Cambridge University Press, Cambridge

    Google Scholar 

  • Saint-Michel F, Pignon F, Magnin A (2003) Fractal behavior and scaling law of hydrophobic silica in polyol. J Colloid Interface Sci 267(2):314–319

    Article  CAS  Google Scholar 

  • Segrè PN, Prasad V, Schofield AB, Weitz DA (2001) Glasslike kinetic arrest at the colloidal-gelation transition. Phys Rev Lett 86:6042–6045

    Article  Google Scholar 

  • Shah SA, Chen YL, Schweizer KS, Zukoski F (2003) Viscoelasticity and rheology of depletion flocculated gels and fluids. J Chem Phys 119:8747–8760

    Article  CAS  Google Scholar 

  • Shih WH, Shih WY, Kim SI, Liu J, Aksay IA (1990) Scaling behavior of the elastic properties of colloidal gels. Phys Rev A 42:4772–4779

    Article  CAS  Google Scholar 

  • Shikata T, Pearson DS (1994) Viscoelastic behavior of concentrated spherical suspensions. J Rheol 38(3):601–616

    Article  Google Scholar 

  • Sollich P, Lequeux F, Hébraud P, Cates ME (1997) Rheology of soft glassy materials. Phys Rev Lett 78:2020–2023

    Article  CAS  Google Scholar 

  • Solomon MJ, Almusallam AS, Seefeldt KF, Somwangthanaroj A, Varadan P (2001) Rheology of polypropylene/play hybrid materials. Macromolecules 34(6):1864–1872

    Article  CAS  Google Scholar 

  • Stauffer D, Aharony A (1992) Introduction to percolation theory. Taylor & Francis, London

    Google Scholar 

  • Surve M, Pryamitsyn V, Ganesan V (2006) Universality in structure and elasticity of polymer-nanoparticle gels. Phys Rev Lett 96(17):17780, 51–54

    Article  Google Scholar 

  • Trappe V, Weitz DA (2000) Scaling of the viscoelasticity of weakly attractive particles. Phys Rev Lett 85(2):449–452

    Article  CAS  Google Scholar 

  • Trappe V, Sandkuhler P (2004) Colloidal gels—low-density disordered solid-like states. Curr Opin Colloid Interface Sci 8:494–500

    Article  CAS  Google Scholar 

  • Trappe V, Prasad V, Cipelletti L, Segrè PN, Weitz DA (2001) Jamming phase diagram for attractive particles. Nature 411:772–775

    Article  CAS  Google Scholar 

  • Tuteja A, Mackay M, Hawker CJ, Van Horn B (2005) Effect of ideal, organic nanoparticles on the flow properties of linear polymers: non-Einstein-like behavior. Macromolecules 38(19):8000–8011

    Article  CAS  Google Scholar 

  • van Megen W, Underwood SM (1994) Glass transition in colloidal hard spheres: measurements and mode-coupling theory analysis of the coherent intermediate scattering functions. Phys Rev E 49:4206–4220

    Article  Google Scholar 

  • Vermant J, Ceccia S, Dolgovskij MK, Maffettone PL, Macosko CW (2007) Quantifying dispersion of layered nanocomposites via melt rheology. J Rheol 51:429–450

    Article  CAS  Google Scholar 

  • Wolthers W, Van den Ende D, Breedveld V, Duits MHG, Potanin AA, Wientjes RHW, Mellema J (1997) Linear viscoelastic behavior of aggregated colloidal dispersions. Phys Rev E 56(5):5726–5733

    Article  CAS  Google Scholar 

  • Wu H, Morbidelli M (2001) A model relating structure of colloidal gels to their elastic properties. Langmuir 17(4):1030–1036

    Article  CAS  Google Scholar 

  • Zhang Q, Archer LA (2002) Poly(ethylene oxide)/silica nano composites: structure and rheology. Langmuir 18(26):10435–10442

    Article  CAS  Google Scholar 

  • Zhu Z, Thompson T, Wang S-Q, von Meerwall ED, Halasa A (2005) Investigating linear and nonlinear viscoelastic behavior using model silica-particle-filled polybutadiene. Macromolecules 38:8816–8824

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Prof. Dave Weitz for useful discussions. G. R. also gratefully acknowledges his hospitality at Harvard University. A.F-N. thanks Ministerio de Educacion y Ciencia (DPI2008-06624-C03-03) and University of Almeria (leave of absence).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Romeo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romeo, G., Filippone, G., Fernández-Nieves, A. et al. Elasticity and dynamics of particle gels in non-Newtonian melts. Rheol Acta 47, 989–997 (2008). https://doi.org/10.1007/s00397-008-0291-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-008-0291-2

Keywords

Navigation