Skip to main content
Log in

Models for the deformation of a single ellipsoidal drop: a review

  • Review
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Dilute polymer blends and immiscible liquid emulsions are characterized by a globular morphology. The dynamics of a single drop subjected to an imposed flow field has been considered to be a valuable model system to get information on dilute blends. This problem has been studied either theoretically by developing exact theories for small drop deformations or by developing simplified models often based on phenomenological assumptions. In this paper, a critical overview of the available models for the dynamics of a single drop is presented, discussing four different systems, namely the Newtonian system, where a single Newtonian drop is immersed in an infinite Newtonian matrix; the non-Newtonian system, where at least one of the components, the drop fluid or the matrix one, is non-Newtonian; the confined Newtonian system, where the matrix is confined and wall effects alter the drop dynamics; and the confined non-Newtonian system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Almusallam AS, Larson RG, Solomon MJ (2000) Constitutive model for prediction of ellipsoidal droplet shapes and stresses in immiscible blends. J Rheol 44:1055–1083

    Article  CAS  ADS  Google Scholar 

  • Almusallam AS, Larson RG, Solomon MJ (2004) Comprehensive constitutive model for immiscible blends of Newtonian polymers. J Rheol 48:319–348

    Article  CAS  ADS  Google Scholar 

  • Astarita G, Marrucci G (1974) Principles of non-Newtonian fluid mechanics. McGraw-Hill, New York

    Google Scholar 

  • Batchelor GK (1970) The stress system in a suspension of force-free particles. J Fluid Mech 41:545–570

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Bentley BJ, Leal LG (1986) An experimental investigation of drop deformation and breakup in steady two-dimensional linear flows. J Fluid Mech 167:241–283

    Article  MATH  CAS  ADS  Google Scholar 

  • Cardinaels R, Verhulst K, Renardy Y, Moldenaers P (2008) Transient droplet behavior and droplet breakup during bulk and confined shear flow in blends with one viscoelastic component: experiments, modelling and simulations. In: Proceedings of the XVth international congress on rheology, August 2008, Monterey, USA, pp 1405–1407

  • Carotenuto C, Grosso M, Maffettone PL (2008) Fourier transform rheology of dilute immiscible polymer blends: a novel procedure to probe blend morphology. Macromolecules 41:4492–4500

    Article  CAS  ADS  Google Scholar 

  • Chaffey CE, Brenner H (1967) A second-order theory for shear deformation of drops. J Colloid Interface Sci 24:258–269

    Article  CAS  Google Scholar 

  • Cristini V, Tan Y (2004) Theory and numerical simulation of droplet dynamics in complex flows—a review. Lab Chip 4:257–264

    Article  CAS  PubMed  Google Scholar 

  • Cristini V, Hooper RW, Macosko CW, Simeone M, Guido S (2002) A numerical and experimental investigation of lamellar blend morphologies. Ind Eng Chem Res 41:6305–6311

    Article  CAS  Google Scholar 

  • de Bruijn RA (1989) Deformation and breakup of drops in simple shear flow. PhD thesis, Eindhoven University of Technology

  • Delaby I, Ernst B, Germain Y, Muller R (1995) Droplet deformation during elongational flow in blends of viscoelastic fluids. Small deformation theory and comparison with experimental results. Rheol Acta 34:525–533

    Article  CAS  Google Scholar 

  • Doi M, Ohta T (1991) Dynamics and rheology of complex interfaces. J Chem Phys 95:1242–1248

    Article  CAS  ADS  Google Scholar 

  • Dressler M, Edwards BJ (2004a) The influence of matrix viscoelasticity on the rheology of polymer blends. Rheol Acta 43:257–282

    Article  CAS  Google Scholar 

  • Dressler M, Edwards BJ (2004b) Rheology of polymer blends with matrix viscoelasticity and narrow droplet size distribution. J Non-Newton Fluid Mech 120:189–205

    Article  MATH  CAS  Google Scholar 

  • Dressler M, Edwards BJ, Windhab EJ (2008) An examination of droplet deformation and break-up between concentrically rotating cylinders. J Non-Newton Fluid Mech 152:86–100

    Article  MATH  CAS  Google Scholar 

  • Edwards BJ, Dressler M (2003) A rheological model with constant approximate volume for immiscible blends of ellipsoidal droplets. Rheol Acta 42:326–337

    Article  CAS  Google Scholar 

  • El Afif A, El Omari M (2009) Low and mass transport in blends of immiscible viscoelastic polymers. Rheol Acta 48:285–299

    Article  Google Scholar 

  • Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond A 241:376–396

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Frankel NA, Acrivos A (1970) The constitutive equation for a dilute emulsion. J Fluid Mech 44:65–78

    Article  MATH  ADS  Google Scholar 

  • Grace HP (1982) Dispersion phenomena in high viscosity immiscible fluid systems and applications of static mixers as dispersion devices. Chem Eng Commun 14:225–227

    Article  CAS  Google Scholar 

  • Greco F (2002) Drop deformation for non-Newtonian fluids in slow flows. J Non-Newton Fluid Mech 107:111–131

    Article  MATH  CAS  Google Scholar 

  • Grizzuti N, Bifulco O (1997) Effects of coalescence and break-up on the steady-state morphology of an immiscible polymer blend in shear flow. Rheol Acta 36:406–415

    CAS  Google Scholar 

  • Grmela M, Ait-Kadi A (1998) Rheology of inhomogeneous immiscible blends. J Non-Newton Fluid Mech 77:191–199

    Article  MATH  CAS  Google Scholar 

  • Grmela M, Ottinger HC (1997) Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys Rev E 56:6620–6626

    Article  CAS  MathSciNet  ADS  Google Scholar 

  • Grmela M, Ait-Kadi A, Utracki LA (1998) Blends of two immiscible and rheologically different fluids. J Non-Newton Fluid Mech 77:253–259

    Article  MATH  CAS  Google Scholar 

  • Grmela M, Bousmina M, Palierne J (2001) On the rheology of immiscible blends. Rheol Acta 40:560–569

    Article  CAS  Google Scholar 

  • Gu JF, Grmela M (2008) Flow properties of immiscible blends: Doi–Ohta model with active advection. Phys Rev E 78:056302/1–056302/17

    CAS  MathSciNet  ADS  Google Scholar 

  • Guido S, Greco F (2004) Dynamics of a liquid drop in a flowing immiscible liquid. Rheol Rev 2:99–142

    Google Scholar 

  • Guido S, Villone M (1998) Three dimensional shape of a drop under simple shear flow. J Rheol 42:395–415

    Article  CAS  ADS  Google Scholar 

  • Guido S, Minale M, Maffettone PL (2000) Drop shape dynamics under shear-flow reversal. J Rheol 44:1385–1399

    Article  CAS  ADS  Google Scholar 

  • Guido S, Simeone M, Greco F (2003) Deformation of a Newtonian drop in a viscoelastic matrix under steady shear flow. Experimental validation of slow flow theory. J Non-Newton Fluid Mech 114:65–82

    Article  CAS  Google Scholar 

  • Han CD (1981) Multiphase flow in polymer processing. Academic, London

    Google Scholar 

  • Happel J, Brenner H (1983) Low Reynolds number hydrodynamics. Martinus Nijhoff Publishers, Dordrecht

    Google Scholar 

  • Jackson NE, Tucker CL III (2003) A model for large deformation of an ellipsoidal droplet with interfacial tension. J Rheol 47:659–682

    Article  CAS  ADS  Google Scholar 

  • Janssen PJA, Anderson PD (2007) Boundary-integral method for drop deformation between parallel plates. Phys Fluids 19:043602/1–043602/11

    Article  CAS  ADS  Google Scholar 

  • Jansseune J, Mewis J, Moldenaers P, Minale M, Maffettone PL (2000) Rheology and rheological morphology determination in immiscible polymer blends. J Non-Newton Fluid Mech 93:153–165

    Article  MATH  CAS  Google Scholar 

  • Jansseune J, Vinckier I, Moldenaers P, Mewis J (2001) Transient stresses in immiscible model polymer blends during start-up flows. J Non-Newton Fluid Mech 99:167–181

    Article  MATH  CAS  Google Scholar 

  • Kennedy MR, Pozrikidis C, Skalak R (1994) Motion and deformation of liquid drops, and the rheology of dilute emulsions in simple shear flow. Comput Fluids 23:251–278

    Article  MATH  CAS  Google Scholar 

  • Khakhar DV, Ottino JM (1986) Deformation and breakup of slender drops in linear flows. J Fluid Mech 166:265–285

    Article  MATH  CAS  ADS  Google Scholar 

  • Lacroix C, Grmela M, Carreau PJ (1998) Relationships between rheology and morphology for immiscible molten blends of polypropylene and ethylene copolymers under shear flow. J Rheol 42:41–62

    Article  CAS  ADS  Google Scholar 

  • Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, New York

    Google Scholar 

  • Lee HM, Park OO (1994) Rheology and dynamics of immiscible polymer blends. J Rheol 38:1405–1425

    Article  CAS  ADS  Google Scholar 

  • Lerdwijitjarud W, Larson RG, Sirivat A, Solomon MJ (2003) Influence of weak elasticity of dispersed phase on droplet behavior in sheared polybutadiene/poly(dimethyl siloxane) blends. J Rheol 47:37–58

    Article  CAS  ADS  Google Scholar 

  • Maffettone PL, Greco F (2004) Ellipsoidal drop model for single drop dynamics with non-Newtonian fluids. J Rheol 48:83–100

    Article  CAS  ADS  Google Scholar 

  • Maffettone PL, Minale M (1998) Equation of change for ellipsoidal drops in viscous flow. J Non-Newton Fluid Mech 78:227–241 Erratum (1999) J Non-Newton Fluid Mech 84:105–106

    Google Scholar 

  • Minale M (2004) Deformation of a non-Newtonian ellipsoidal drop in a non-Newtonian matrix: extension of Maffettone–Minale model. J Non-Newton Fluid Mech 123:151–160

    Article  MATH  CAS  Google Scholar 

  • Minale M (2008) A phenomenological model for wall effects on the deformation of an ellipsoidal drop in viscous flow. Rheol Acta 47:667–675

    Article  CAS  Google Scholar 

  • Minale M, Maffettone PL (2003) Morphology estimation from normal stress measurements for dilute immiscible polymer blends. Rheol Acta 42:158–165

    Article  CAS  Google Scholar 

  • Minale M, Moldenaers P, Mewis J (1997) Effect of shear history on the morphology of immiscible polymer blends. Macromolecules 30:5470–5475

    Article  CAS  ADS  Google Scholar 

  • Minale M, Mewis J, Moldenaers P (1998) Study of the morphological hysteresis in immiscible polymer blend. AIChE J 44:943–950

    Article  CAS  Google Scholar 

  • Minale M, Moldenaers P, Mewis J (1999) Transient flow experiments in a model immiscible polymer blend. J Rheol 43:815–827

    Article  CAS  ADS  Google Scholar 

  • Minale M, Caserta S, Guido S (2010) Microconfined shear deformation of a droplet in an equiviscous non-Newtonian immiscible fluid: experiments and modeling. Langmuir 26:126–132

    Article  CAS  PubMed  Google Scholar 

  • Okamoto K, Takahashi M, Yamane H, Kashihara H, Watanabe H, Masuda T (1999) Shape recovery of a dispersed droplet phase and stress relaxation after application of step shear strains in a polystyrene polycarbonate blend melt. J Rheol 43:951–965

    Article  CAS  ADS  Google Scholar 

  • Ottinger HC, Grmela M (1997) Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism. Phys Rev E 56:6633–6655

    Article  CAS  MathSciNet  ADS  Google Scholar 

  • Ottino JM, De Roussel P, Hansen S, Khakhar DV (2000) Mixing and dispersion of viscous liquids and powdered solids. Adv Chem Eng 25:105–204

    Article  CAS  Google Scholar 

  • Palierne JF (1990) Linear rheology of viscoelastic emulsions with interfacial tension. Rheol Acta 29:204–214 Erratum (1991) Rheo Acta 30:497

    Article  CAS  Google Scholar 

  • Peters GWM, Hansen S, Meijer HEH (2001) Constitutive modeling of dispersive mixtures. J Rheol 45:659–689

    Article  CAS  ADS  Google Scholar 

  • Rallison JM (1980) Note on the time-dependent deformation of a viscous drop which is almost spherical. J Fluid Mech 98:625–633

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Rallison JM (1984) The deformation of small viscous drops and bubbles in shear flows. Ann Rev Fluid Mech 16:45–66

    Article  ADS  Google Scholar 

  • Rallison JM, Acrivos A (1978) A numerical study of the deformation and burst of a viscous drop in an extensional flow. J Fluid Mech 89:191–200

    Article  MATH  ADS  Google Scholar 

  • Shapira M, Haber S (1988) Low Reynolds number motion of a droplet between two parallel plates. Int J Multiphase Flow 14:483–506

    Article  MATH  CAS  Google Scholar 

  • Shapira M, Haber S (1990) Low Reynolds number motion of a droplet in shear flow including wall effects. Int J Multiphase Flow 16:305–321

    Article  MATH  CAS  Google Scholar 

  • Sibillo V, Simeone M, Guido S, Greco F, Maffettone PL (2006a) Start-up and retraction dynamics of a Newtonian drop in a viscoelastic matrix under simple shear flow. J Non-Newton Fluid Mech 134:27–32

    Article  MATH  CAS  Google Scholar 

  • Sibillo V, Pasquariello G, Simeone M, Cristini V, Guido S (2006b) Drop deformation in microconfined shear flow. Phys Rev Lett 97:054502

    Article  PubMed  ADS  Google Scholar 

  • Stone HA (1994) Dynamics of drop deformation and breakup in viscous fluids. Ann Rev Fluid Mech 26:65–102

    Article  ADS  Google Scholar 

  • Stone HA, Leal LG (1989) Relaxation and breakup of an initially extended drop in an otherwise quiescent fluid. J Fluid Mech 198:399–427

    Article  CAS  ADS  Google Scholar 

  • Stone HA, Bentley BJ, Leal LG (1986) An Experimental study of transient effects in the breakup of viscous drops. J Fluid Mech 173:131–158

    Article  CAS  ADS  Google Scholar 

  • Taylor GI (1932) The viscosity of a fluid containing small drop of another fluid. Proc R Soc A 138:41–48

    Article  MATH  CAS  ADS  Google Scholar 

  • Taylor GI (1934) The formation of emulsion in definable field of flow. Proc R Soc A 146:501–523

    Article  CAS  ADS  Google Scholar 

  • Toose EM (1997) Simulation of the deformation of non Newtonian drops in viscous flows. PhD thesis, Twente University, The Netherlands

  • Tretheway DC, Leal LG (1999) Surfactant and viscoelastic effects on drop deformation in 2-D extensional flow. AIChE J 45:929–937

    Article  CAS  Google Scholar 

  • Tretheway DC, Leal LG (2001) Deformation and relaxation of Newtonian drops in planar extensional flows of a Boger fluid. J Non-Newton Fluid Mech 99:81–108

    Article  MATH  CAS  Google Scholar 

  • Truesdell CA, Noll W (1965) The non-linear field theories of mechanics. In: Flugge S (ed) Encyclopedia of physics, vol III/3. Springer, Berlin

    Google Scholar 

  • Torza S, Cox RG, Mason SG (1972) Particle motions in sheared suspensions. J Colloid Interface Sci 38:395–411

    Article  CAS  Google Scholar 

  • Tucker CL, Moldenaers P (2002) Microstructural evolution in polymer blends. Ann Rev Fluid Mech 34:177–210

    Article  MathSciNet  ADS  Google Scholar 

  • Vananroye AP, Van Puyvelde P, Moldenaers P (2006) Effect of confinement on droplet breakup in sheared emulsions. Langmuir 22:3972–3974

    Article  CAS  PubMed  Google Scholar 

  • Vananroye AP, Van Puyvelde P, Moldenaers P (2007) Effect of confinement on the steady-state behaviour of single droplets during shear flow. J Rheol 51:139–153

    Article  CAS  ADS  Google Scholar 

  • Van Puyvelde P, Moldenaers P (2005) Rheology and morphology development in immiscible polymer blends. Rheology Reviews of the British Society of Rheology, pp 101–145

  • Van Puyvelde P, Vananroye A, Cardinaels R, Moldenaers P (2008) Review on morphology development of immiscible blends in confined shear flow. Polymer 49:5363–5372

    Article  Google Scholar 

  • Verhulst K, Moldenaers P, Minale M (2007) Drop shape dynamics of a Newtonian drop in a non-Newtonian matrix during transient and steady shear flow. J Rheol 51:261–273

    Article  CAS  ADS  Google Scholar 

  • Verhulst K, Cardinaels R, Renardy Y, Moldenaers P (2008) Steady state droplet deformation and orientation during bulk and confined shear flow in blends with one viscoelastic component: experiments, modeling and simulations. In: Proceedings of the XVth international congress on rheology, August 2008, Monterey, USA, pp 1000–1002

  • Verhulst K, Cardinaels R, Moldenaers P, Renardy Y, Afkhamib S (2009a) Influence of viscoelasticity on drop deformation and orientation in shear flow. Part 1. Stationary states. J Non-Newton Fluid Mech 156:29–43

    Article  CAS  Google Scholar 

  • Verhulst K, Cardinaels R, Moldenaers P, Renardy Y, Afkhamib S (2009b) Influence of viscoelasticity on drop deformation and orientation in shear flow. Part 2: dynamics. J Non-Newton Fluid Mech 156:44–57

    Article  CAS  Google Scholar 

  • Vinckier I, Moldenaers P, Mewis J (1996) Relationship between rheology and morphology of model blends in steady shear flow. J Rheol 40:613–631

    Article  CAS  ADS  Google Scholar 

  • Wagner NJ, Ottinger HC, Edwards BJ (1999) Generalized Doi–Ohta model for multiphase flow developed via GENERIC. AIChE J 45:1169–1181

    Article  CAS  Google Scholar 

  • Wannaborworn S, Mackley MR, Renardy Y (2002) Experimental observation and matching numerical simulation for the deformation and breakup of immiscible drops in oscillatory shear. J Rheol 46:1279–1293

    Article  CAS  ADS  Google Scholar 

  • Wetzel ED, Tucker CL III (1999) Area tensors for modeling microstructure during laminar liquid–liquid mixing. Int J Multiphase Flow 25:35–61

    Article  MATH  CAS  Google Scholar 

  • Wetzel ED, Tucker CL III (2001) Droplet deformation in dispersions with unequal viscosities and zero interfacial tension. J Fluid Mech 426:199–228

    Article  MATH  CAS  ADS  Google Scholar 

  • Wu Y, Zinchenko AZ, Davis RH (2002) General ellipsoidal model for deformable drops in viscous flows. Ind Eng Chem Res 41:6270–6278

    Article  CAS  Google Scholar 

  • Yamane H, Takahashi M, Hayashi H, Kashihara H, Watanabe H, Masuda T (1998) Observation of deformation and recovery of polyisobutylene droplets in a polyisobutylene/polydimethylsiloxane blend after application of step shear strain. J Rheol 42:567–580

    Article  CAS  ADS  Google Scholar 

  • Yu W, Bousmina M (2003) Ellipsoidal model for droplet deformation in emulsions. J Rheol 47:1011–1039

    Article  CAS  ADS  Google Scholar 

  • Yu W, Zhou C (2007) A simple constitutive equation for immiscible blend. J Rheol 51:179–194

    Article  CAS  ADS  Google Scholar 

  • Yu W, Bousmina M, Grmela M, Palierne J, Zhou C (2002a) Quantitative relationship between rheology and morphology in emulsions. J Rheol 46:1381–1399

    Article  CAS  ADS  Google Scholar 

  • Yu W, Bousmina M, Grmela M, Zhou C (2002b) Modeling of oscillatory shear flow of emulsions under small and large deformation fields. J Rheol 46:1401–1418

    Article  CAS  ADS  Google Scholar 

  • Yu W, Bousmina M, Zhou C, Tucker CL III (2004) Theory for drop deformation in viscoelastic systems. J Rheol 48:417–438

    Article  CAS  ADS  Google Scholar 

  • Yu W, Zhou C, Bousmina M (2005) Theory of morphology evolution in mixtures of viscoelastic immiscible components. J Rheol 49:215–236

    Article  CAS  ADS  Google Scholar 

  • Yue P, Feng JJ, Liu C, Shen J (2005a) Transient drop deformation upon startup of shear in viscoelastic fluids. Phys Fluids 17:123101–123107

    Article  ADS  Google Scholar 

  • Yue P, Feng JJ, Liu C, Shen J (2005b) Diffuse-interface simulations of drop coalescence and retraction in viscoelastic fluids. J Non-Newton Fluid Mech 129:163–176

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Minale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minale, M. Models for the deformation of a single ellipsoidal drop: a review. Rheol Acta 49, 789–806 (2010). https://doi.org/10.1007/s00397-010-0442-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-010-0442-0

Keywords

Navigation