Skip to main content
Log in

A rheological model with constant approximate volume for immiscible blends of ellipsoidal droplets

  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

We develop a set of evolution equations describing the effects of a general deformation field on the shape, size, and orientation of constant-volume droplets suspended in a Newtonian fluid. The rheological characteristic functions of this incompressible and immiscible polymer blend model are also derived in tandem with the abovementioned set. The constant-volume constraint is implemented using a recent methodology (Edwards BJ, Dressler M, Grmela M, Ait-Kadi A (2002) Rheological models with microstructural constraints. Rheo Acta (in press)) and discussed relative to the similarly volume-constrained model of Almusallam et al. (Almusallam AS, Larson RG, Solomon MJ (2000) A constitutive model for the prediction of ellipsoidal droplet shapes and stresses in immiscible blends. J Rheol 44:1055–1083). Sample results are reported for step-strain and shear relaxation profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  • Ait-Kadi A, Ramazani A, Grmela M, Zhou C (1999) Volume preserving rheological models for polymer melts and solutions using the GENERIC formalism. J Rheol 43:51–72

    CAS  Google Scholar 

  • Almusallam AS, Larson RG, Solomon MJ (2000) A constitutive model for the prediction of ellipsoidal droplet shapes and stresses in immiscible blends. J Rheol 44:1055–1083

    CAS  Google Scholar 

  • Batchelor GK (1970) The stress system in a suspension of force-free particles. J Fluid Mech 41:545–570

    Google Scholar 

  • Beris AN, Edwards BJ (1990a) Poisson bracket formulation of incompressible flow equations in continuum mechanics. J Rheol 34:55–78

    Article  Google Scholar 

  • Beris AN, Edwards BJ (1990b) Poisson bracket formulation of viscoelastic flow equations of differential type: a unified approach. J Rheol 34:503–538

    Article  Google Scholar 

  • Beris AN, Edwards BJ (1994) Thermodynamics of flowing systems. Oxford University Press, New York

  • Bousmina M, Aouina M, Bushra C, Guénette R, Bretas RES (2001) Rheology of polymer blends: non-linear model for viscoelastic emulsions undergoing high deformation flows. Rheol Acta 40:538–551

    Article  CAS  Google Scholar 

  • Choi SJ, Schowalter WR (1975) Rheological properties of nondilute suspensions of deformable particles. Phys Fluids 18:420–427

    Google Scholar 

  • Doi M, Ohta T (1991) Dynamics and rheology of complex interfaces. J Chem Phys 95:1242–1248

    CAS  Google Scholar 

  • Dressler M, Edwards BJ, Öttinger HC (1999) Macroscopic thermodynamics of flowing polymeric fluids. Rheol Acta 38:117–136

    CAS  Google Scholar 

  • Edwards BJ, Beris AN (1991a) A unified view of transport phenomena based on the generalized bracket formulation. Ind Eng Chem Res 30:873–881

    CAS  Google Scholar 

  • Edwards BJ, Beris AN (1991b) Noncanonical Poisson bracket for nonlinear elasticity with extensions to viscoelasticity. J Phys A Math Gen 24:2461–2480

    Article  Google Scholar 

  • Edwards BJ, Beris AN, Grmela M (1991) The dynamical behavior of liquid crystals: a continuum description through generalized brackets. Mol Cryst Liq Cryst 201:51–86

    Google Scholar 

  • Edwards BJ, Dressler M, Grmela M, Ait-Kadi A (2002) Rheological models with microstructural constraints. Rheo Acta (in press)

  • Grmela M (1988) Hamiltonian dynamics of incompressible elastic fluids. Phys Lett A 130:81–86

    Article  Google Scholar 

  • Grmela M (1989) Hamiltonian mechanics of complex fluids. J Phys A Math Gen 22:4375–4394

    Article  Google Scholar 

  • Grmela M, Ait-Kadi A (1994) Comments on the Doi-Ohta theory of blends. J Non-Newtonian Fluid Mech 55:191–195

    Article  CAS  Google Scholar 

  • Grmela M, Ait-Kadi A (1998) Rheology of inhomogeneous immiscible blends. J Non-Newtonian Fluid Mech 77:191–199

    Article  CAS  Google Scholar 

  • Grmela M, Carreau PJ (1987) Conformation tensor rheological models. J Non-Newtonian Fluid Mech 23:271–294

    CAS  Google Scholar 

  • Grmela M, Öttinger HC (1997) Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys Rev E 56:6620–6632

    CAS  Google Scholar 

  • Grmela M, Ait-Kadi A, Utracki LA (1998) Blends of two immiscible and rheologically different fluids. J Non-Newtonian Fluid Mech 77:253–259

    Article  CAS  Google Scholar 

  • Grmela M, Bousmina M, Palierne JF (2001) On the rheology of immiscible Blends. Rheol Acta 40:560–569

    CAS  Google Scholar 

  • Jansseune T, Vinckier I, Moldenaers P, Mewis J (2001) Transient stresses in immiscible model polymer blends during start-up flows. J Non-Newtonian Fluid Mech 99:167–181

    Article  CAS  Google Scholar 

  • Lacroix C, Grmela M, Carreau PJ (1998) Relationships between rheology and morphology for immiscible molten blends of polypropylene and ethylene copolymers under shear flow. J Rheol 42:41–62

    Article  CAS  Google Scholar 

  • Lee HM, Park OO (1994) Rheology and dynamics of immiscible polymer blends. J Rheol 38:1405–1425

    CAS  Google Scholar 

  • Leonov AI (1976) Nonequilibrium thermodynamics and rheology of viscoelastic polymer media. Rheol Acta 15:85–98

    Google Scholar 

  • Maffetone PL, Minale M (1998) Equations of change for ellipsoid drops in viscous flow. J Non-Newtonian Fluid Mech 78:227–241. Erratum (1999) 84:105–106

    Google Scholar 

  • Onuki A (1987) Viscosity enhancement by domains in phase-separating fluids near the critical point: proposal of critical rheology. Phys Rev A 35:5149–5155

    Article  PubMed  Google Scholar 

  • Öttinger HC, Grmela M (1997) Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism. Phys Rev E 56:6633–6655

    Article  Google Scholar 

  • Wagner NJ, Öttinger HC, Edwards BJ (1999) Generalized Doi-Ohta model for multiphase flow developed via GENERIC. AIChE J 45:1169–1181

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian J. Edwards.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edwards, B.J., Dressler, M. A rheological model with constant approximate volume for immiscible blends of ellipsoidal droplets. Rheol Acta 42, 326–337 (2003). https://doi.org/10.1007/s00397-002-0288-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-002-0288-1

Navigation