Skip to main content
Log in

Shear rheometry and visualization of glass fiber suspensions

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The nonlinear rheological behavior of short glass fiber suspensions has been investigated in this work by rotational rheometry and flow visualization. A Newtonian and a Boger fluid (BF) were used as suspending media. The suspensions exhibited shear thinning in the semidilute regime and weaker shear thinning in the transition to the concentrated one. Normal stresses and relative viscosity were higher for the BF suspensions than for the Newtonian ones presumably due to enhanced hydrodynamic interactions resulting from BF elasticity. In addition, relative viscosity of the suspensions increased rapidly with fiber content, suggesting that the rheological behavior in the concentrated regime is dominated by mechanical contacts between fibers. Visualization of individual fibers and their interactions under flow allowed the detection of aggregates, which arise from adhesive contacts. The orientation states of the fibers were quantified by a second order tensor and fast Fourier transforms of the flow field images. Fully oriented states occurred for shear rates around 20 s − 1. Finally, the energy required to orient the fibers was higher in step forward than in reversal flow experiments due to a change in the spatial distribution of fibers, from isotropic to planar oriented, during the forward experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Advani SG, Tucker III CL (1987) The use of tensors to describe and predict fiber orientation in short fiber composites. J Rheol 31(8):751–784

    Article  CAS  ADS  Google Scholar 

  • Aït-Kadi A, Grmela M (1994) Modeling the rheological behavior of fibre suspensions in viscoelastic media. J Non-Newton Fluid Mech 53:65–81

    Article  Google Scholar 

  • Attanasio A, Bernini U, Gallopo P, Segré G (1972) Significance of viscosity measurements in microscopic suspensions of elongated particles. Trans Soc Rheol 16(1):147–154

    Article  Google Scholar 

  • Barnes HA (2003) A review of the rheology of filled viscoelastic systems. In: Binding DM, Walters K (eds) Rheology reviews. The British Society of Rheology, Aberystwyth, pp 1–32

    Google Scholar 

  • Batchelor GK (1971) The stress generated in non-dilute suspensions of elongated particles by pure staining motion. J Fluid Mech 46:813–829

    Article  ADS  MATH  Google Scholar 

  • Bibbo MA, Dinh SM, Armstrong RC (1985) Shear flow properties of semiconcentrated fiber suspensions. J Rheol 29(6):905–929

    Article  ADS  Google Scholar 

  • Chaouche M, Koch D (2001) Rheology of non-Brownian rigid fiber suspensions with adhesive contacts. J Rheol 45(2):369–382

    Article  CAS  ADS  Google Scholar 

  • Dihn SM, Armstrong RC (1984) A rheological equation state for semiconcentrated fiber suspensions. J Rheol 28(3):207–227

    Article  ADS  Google Scholar 

  • Djalili-Moghaddan M, Toll S (2006) Fibre suspension rheology: effect of concentration, aspect ratio and fiber size. Rheol Acta 45:315–320

    Article  Google Scholar 

  • Eberle PRA, Baird DG, Wapperon P (2008) Rheology of non-Newtonian fluids containing glass fibers: a review of experimental literature. Ind Eng Chem Res 47:3470–3488

    Article  CAS  Google Scholar 

  • Fan Z, Advani SG (2005) Characterization of orientation state of carbon nanotubes in shear flow. Polymer 46:5232–5240

    Article  CAS  Google Scholar 

  • Gadala-Maria F, Acrivos A (1980) Shear-induced structure in a concentrated suspension of solid spheres. J Rheol 24:799–814

    Article  CAS  ADS  Google Scholar 

  • Ganani E, Powell RL (1985) Suspensions of rodlike particles: literature review and data correlations. J Compos Mater 19:194–215

    Article  CAS  Google Scholar 

  • Gunes DZ, Scirocco R, Mewis J, Vermant J (2008) Flow-induced orientation of non-spherical particles: effect of aspect ratio and medium rheology. J Non-Newton Fluid Mech 155:39–50

    Article  CAS  Google Scholar 

  • Keshtkar M, Heuzey MC, Carreau PJ (2009) Rheological behavior of fiber-filled model suspensions: effect of fiber flexibility. J Rheol 53(3):631–650

    Article  CAS  ADS  Google Scholar 

  • Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, New York

    Google Scholar 

  • Laun HM (1984) Orientation effects and rheology of short glass fiber-reinforced thermoplastics. Colloid Polym Sci 262:257–269

    Article  CAS  Google Scholar 

  • Lipscomb GG, Denn MM, Hur DU (1988) The flow of fiber suspensions in complex geometries. J Non-Newton Fluid Mech 26:297–325

    Article  CAS  Google Scholar 

  • Moldenaers P, Fuller GG, Mewis J (1989) Mechanical and optical rheometry of polymer liquid-crystal domain structure. Macromolecules 22:960–965

    Article  CAS  ADS  Google Scholar 

  • Petrich MP, Koch DL (1998) Interactions between contacting fibers. Phys Fluids 10(8):2111–2113

    Article  CAS  ADS  Google Scholar 

  • Petrich MP, Koch DL, Cohen C (2000) An experimental determination of the stress-microstructure relationship in semi-concentrated fiber suspensions. J Non-Newton Fluid Mech 95:101–133

    Article  CAS  Google Scholar 

  • Petrie CJS (1999) The rheology of fibre suspensions. J Non-Newton Fluid Mech 87:369–402

    Article  CAS  MATH  Google Scholar 

  • Ramazani A, Aït-Kadi A, Grmela M (2001) Rheology of fiber suspensions in viscoelastic media: experiments and model predictions. J Rheol 45(4):945–962

    Article  CAS  ADS  Google Scholar 

  • Schmid CF, Klingenberg DJ (2000) Mechanical flocculation in flowing fiber suspensions. Phys Rev Lett 84(2):290–293

    Article  CAS  PubMed  ADS  Google Scholar 

  • Scirocco R, Vermant J, Mewis J (2005) Shear thickening in filled Boger fluids. J Rheol 49(2):551–567

    Article  CAS  ADS  Google Scholar 

  • Sepehr M, Carreau PJ, Moan M, Ausias G (2004a) Rheological properties of short fiber model suspensions. J Rheol 48(5):1023–1048

    Article  CAS  ADS  Google Scholar 

  • Sepehr M, Ausias M, Carreau PJ (2004b) Rheological properties of short fiber filled polypropylene in transient shear flow. J Non-Newton Fluid Mech 123:19–32

    Article  CAS  MATH  Google Scholar 

  • Shaqfeh ESG, Fredrickson GH (1990) The hydrodynamic stress in a suspension of rods. Phys Fluids A 2(1):7–24

    Article  CAS  MathSciNet  ADS  MATH  Google Scholar 

  • Shenoy A (1999) Rheology of filled polymer systems. Kluwer, The Netherlands

    Google Scholar 

  • Stover CA, Koch DL, Cohen C (1992) Observations of fibre orientation in simple shear flow of semi-dilute suspensions. J Fluid Mech 238:277–296

    Article  CAS  ADS  Google Scholar 

  • Sundararajakumar RR, Koch D (1997) Structure and properties of a sheared fiber suspensions with mechanical contacts. J Non-Newton Fluid Mech 73:205–239

    Article  CAS  Google Scholar 

  • Sung JH, Mewis J, Moldenaers P (2008) Transient rheological probing of PIB/hectorite-nanocomposites. Korea-Aust Rheol J 20:27–34

    Google Scholar 

  • Zirnsak MA, Hur DU, Boger DV (1994) Normal stresses in fibres suspensions. J Non-Newton Fluid Mech 54:153–193

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by CONACYT-CIAM (51837 K) and SIP-IPN (20070642, 20082313, and 20091012). B. M. Marín-Santibáñez had CONACYT and PIFI-IPN scholarships to carry out this work. J. Pérez-González and L. de Vargas are COFFA-EDI fellows.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Pérez-González.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marín-Santibáñez, B.M., Pérez-González, J. & de Vargas, L. Shear rheometry and visualization of glass fiber suspensions. Rheol Acta 49, 177–189 (2010). https://doi.org/10.1007/s00397-009-0418-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-009-0418-0

Keywords

Navigation