Skip to main content
Log in

Sedimentation of particles in shear flows of fluids with fibers

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The sedimentation of particles in a dense suspension supplemented by two additional factors is the subject of the current study. The addition of a small amount of thin flexible fibers into a base viscous suspending fluid is the first additional factor. The second additional factor is the subjection of the test fluid volume to shear flow in the plane perpendicular to the gravitational acceleration vector. Glycerol was used as the base Newtonian fluid. The mass fraction of monolithic synthetic fibers with length and diameter of 6 mm and 12 μm was varied from 0 to 0.4 %. Ceramic spheres with mean diameter of 0.66 mm were used to create suspensions with volume concentrations of 0–30 %. The sedimentation was observed in a transparent channel with a shear rate up to 108 s−1. The sedimentation process was monitored by video recording and image processing techniques. It was found that fiber additives suppress the sedimentation significantly. The decrease in sedimentation velocity is more noticeable at low shear rates, whereas fibers do not markedly affect sedimentation at high shear rates of the order of 100 s−1. The effect of the deceleration of the sedimentation increases as the fiber and particle concentrations increase. The linear relationship between the sedimentation velocity and viscosity of the suspension was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Barnes HA, Hutton JF, Walters K (1989) An introduction to rheology. Elsevier, Amsterdam

    Google Scholar 

  • Bazilevskii AV, Rozhkov AN (2009) Motion of a sphere down an inclined plane in a viscous flow. Fluid Dyn 44(4):566–576

    Article  Google Scholar 

  • Bazilevskii AV, Koroteev DA, Rozhkov AN, Skobeleva AA (2010) Sedimentation of particles in shear flows of viscoelastic fluids. Fluid Dyn 45(4):626–637

    Article  Google Scholar 

  • Bivins CH, Bomey CV, Fredd C, Lassek J, Sullivan P, Engels J, Fielder EO, Gorham T, Judd T, Mogollon AES, Tabor L, Munoz A, Willberg D (2005) New fibers for hydraulic fracturing. Oilfield Revue Schlumberger 17(2):34–43

  • Daugan S, Talini L, Herzhaft B, Peysson Y, Allain C (2004) Sedimentation of suspensions in shear-thinning fluids. Oil Gas Sci Technol Rev IFP 59(1):71–80

    Article  Google Scholar 

  • De Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca and London

    Google Scholar 

  • Doi M, Edwards SF (1986) The theory of polymer dynamics. Clarendon, Oxford

    Google Scholar 

  • Elgaddafi R, Ahmed R, George M, Growcock F (2012) Sedimentation behavior of spherical particles in fiber-containing drilling fluids. J Pet Sci Eng 84–85:20–28

    Article  Google Scholar 

  • Flory P (1971) Principles of polymer chemistry. Cornell University Press, Ithaca and NY

    Google Scholar 

  • George M, Ahmed R, Growcock F (2011) Rheological properties of fiber-containing drilling sweeps at ambient and elevated temperatures. AADE-11-NTCE-35:1-15

  • George M, Ahmed R, Growcock F (2012) Stability and flow behavior of fiber-containing drilling sweeps. In: Dr Juan De Vicente (ed) Tech Rheology. Available from: http://www.intechopen.com/books/rheology/stability-and-flow-behavior-of-fiber-containing-drilling-sweeps

  • Gheissary G, van der Brule BHAA (1996) Unexpected phenomena observed in particle sedimentation in non-newtonian media. J Non-Newtonian Fluid Mech 67(1):1–18

    Article  Google Scholar 

  • Harlen OG, Sundararajakumar RR, Koch DL (1999) Numerical simulations of a sphere sedimentation through a suspension of neutrally buoyant fibers. J Fluid Mech 388:355–388

    Article  Google Scholar 

  • Liu Y, Sharma MM (2005) Effect of fracture width and fluid rheology on particles sedimentation and retardation: an experimental study. SPE/DOE (96208):1–12

  • Petrie CJS (1999) The rheology of fiber suspensions. J Non-Newtonian Fluid Mech 87(2–3):369–402

    Article  Google Scholar 

  • Roodhart LP (1985) Particles sedimentation in non-newtonian fracturing fluids. SPE/DOE (13905):1–10

  • Taylor JR (1997) An introduction to error analysis the study of uncertainties in physical measurements. University Science, Sausalito

    Google Scholar 

  • van der Brule BHAA, Gheissary G (1993) Effects of fluid elasticity on the static and dynamic sedimentation of a spherical particle. J Non-Newtonian Fluid Mech 49(1):123–132

    Article  Google Scholar 

  • Willberg DM, Fredd CN, Bulova M (2012) Degradable fiber systems for stimulation. Patent US 8230925 B2

Download references

Acknowledgments

This work was conducted under research contract no. Slb-FAC-27/05/2013-IPM_RAN/TCS between the Schlumberger Technology Corporation and the A. Ishlinsky Institute for Problems in Mechanics, RAS. The authors thank Professor R.V. Goldstein for the help in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksey N. Rozhkov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. 1S

(DOCX 328 kb)

Fig. 2S

(DOCX 211 kb)

Fig. 3S

(DOCX 373 kb)

Fig. 4S

(DOCX 289 kb)

Fig. 5S

(DOCX 326 kb)

Fig. 6S

(DOCX 954 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazilevsky, A.V., Kalinichenko, V.A., Plyashkevich, V.A. et al. Sedimentation of particles in shear flows of fluids with fibers. Rheol Acta 55, 11–22 (2016). https://doi.org/10.1007/s00397-015-0897-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-015-0897-0

Keywords

Navigation