Skip to main content
Log in

Measurements and model predictions of transient elongational rheology of polymeric nanocomposites

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Transient elongational rheology of two commercial-grade polypropylene (PP) and the organoclay thermoplastic nanocomposites is investigated. A specifically designed fixture consisting of two drums (SER Universal Testing Platform) mounted on a TA Instruments ARES rotational rheometer was used to measure the transient uniaxial extensional viscosity of both polypropylene and nanoclay/PP melts. The Hencky strain rate was varied from 0.001 to 2 s − 1, and the temperature was fixed at 180°C. The measurements show that the steady-state elongational viscosity was reached at the measured Hencky strains for the polymer and for the nanocomposites. The addition of nanoclay particles to the polymer melt was found to increase the elongation viscosity principally at low strain rates. For example, at a deformation rate of 0.3 s − 1, the steady-state elongation viscosity for polypropylene was 1.4 × 104 Pa s which was raised to 2.8 × 104 and 4.5 × 104 Pa s after addition of 0.5 and 1.5 vol.% nanoclay, respectively. A mesoscopic rheological model originally developed to predict the motion of ellipsoid particles in viscoelastic media was modified based on the recent developments by Eslami and Grmela (Rheol Acta 47:399–415, 2008) to take into account the polymer chain reptation. We show that the orientation states of the particles and the rheological behavior of the layered particles/thermoplastic hybrids can be quantitatively explained by the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Advani SG, Tucker CL (1987) The use of tensors to describe and predict fiber orientation in short fiber composites. J Rheol 31:751

    Article  CAS  ADS  Google Scholar 

  • Advani SG, Tucker CL (1990) Closure approximations for three-dimensional structure tensors. J Rheol 34:367

    Article  ADS  Google Scholar 

  • Bird RB, DeAguiar JR (1983) An encapsulated dumbell model for concentrated polymer solutions and melts I. Theoretical development and constitutive equation. J Non-Newton Fluid Mech 13:149

    Article  MATH  CAS  Google Scholar 

  • Bird RB, Dotson PJ, Johnson NL (1980) Polymer solution rheology based on a freely extensible bead-spring chain model. J Non-Newton Fluid Mech 7:213

    Article  MATH  CAS  Google Scholar 

  • Bird RB, Armstrong RC, Hassager O (1987a) Dynamics of polymeric liquids, vol 1, 2nd edn. John Wiley, New York

    Google Scholar 

  • Bird RB, Hassager O, Armstrong RC, Curtis CL (1987b) Dynamics of polymeric liquids, vol 2, 2nd edn. Wiley, New York

    Google Scholar 

  • Cintra JS, Tucker CL (1995) Orthotropic closure approximations for flow-induced fiber orientation. J Rheol 39:1095

    Article  CAS  ADS  Google Scholar 

  • Eslami H, Grmela M (2008) Mesoscopic formulation of reptation. Rheol Acta 47:399–415

    Article  CAS  Google Scholar 

  • Eslami H, Grmela M, Bousmina M (2009) A mesoscopic tube model of polymer/layered silicate nanocomposites. Rheol Acta 48:317–331

    Article  CAS  Google Scholar 

  • Folgar FP, Tucker CL (1984) Orientation behaviour of fibers in concentrated suspensions. J Reinf Plast Compos 3:98

    Article  CAS  Google Scholar 

  • Galgali G, Ramesh C, Lele A (2001) A rheological study on the kinetics of hybrid formation in polypropylene nanocomposites. Macromolecules 34:852

    Article  CAS  ADS  Google Scholar 

  • Giannelis EP, Krishnamoorti R, Manias E (1999) Polymer–silicate nanocomposites: model systems for confined polymers and polymer brushes. Adv Polym Sci 138:10

    Google Scholar 

  • Grmela M (1985) Stress tensor in generalized hydrodynamics. Phys Lett A 111:41

    Article  MathSciNet  ADS  Google Scholar 

  • Grmela M, Ottinger HC (1997) Dynamics and thermodynamics of complex fluids I. Development of a GENERIC formulation. Phys Rev E 55:6620

    Article  MathSciNet  ADS  Google Scholar 

  • Jeffery GB (1922) The motion of ellipsoidal particles immersed in a viscous fluid. Proc R Soc Lond A, 102:161

    Article  ADS  Google Scholar 

  • Letwimolnum W, Vergnes B, Ausias G, Carreau PJ (2007) Stress overshoots of organoclay nanocomposites in transient shear flow. J Non-Newton Fluid Mech 141:167

    Article  Google Scholar 

  • Lin-Gibson S, Kim H, Schmidt G, Han CC, Hobbie EK (2004) Shear-induced structure in polymer–clay nanocomposite solutions. J Colloid Interface Sci 274:515

    Article  CAS  PubMed  Google Scholar 

  • Onsager L (1949) The effects of shape on the interaction of colloidal particles. Ann N Y Acad Sci 51:627

    Article  CAS  ADS  Google Scholar 

  • Ottinger HC, Grmela M (1997) Dynamics and thermodynamics of complex fluids II. Illustrations of a general formalism. Phys Rev E 55:6633

    Article  MathSciNet  ADS  Google Scholar 

  • Rajabian M, Dubois C, Grmela M (2005) Suspensions of semiflexible fibers in polymeric fluids: rheology and thermodynamics. Rheol Acta 44:521

    Article  CAS  Google Scholar 

  • Rajabian M, Naderi G, Beheshty MH, Lafleur PG, Dubois C, Carreau PJ (2008a) Experimental study and modeling of flow behavior and orientation kinetics of layered silicate/polypropylene nanocomposites in start-up of shear flows. Int Polym Process 13:110

    Article  Google Scholar 

  • Rajabian M, Dubois C, Grmela M, Carreau PJ (2008b) Effects of polymer–fiber interactions on rheology and flow behavior of suspensions of semiflexible fibers in polymeric liquids. Rheol Acta 47:701–71

    Article  CAS  Google Scholar 

  • Ren J, Casanueva BF, Mitchell CA, Krishnamoorti R (2003) Disorientation kinetics of aligned polymer layered silicate nanocomposites. Macromolecules 36:4188

    Article  CAS  ADS  Google Scholar 

  • Sentmanat M, Wang BN, McKinley G (2005) Measuring the transient extensional rheology of polyethylene melts using the SER universal testing platform. J Rheol 49:585

    Article  CAS  ADS  Google Scholar 

  • Solomon MJ, Almusallam AS, Seefeldt KF, Somwangthanaroj A, Varadan P (2001) Rheology of polypropylene/clay hybrid materials. Macromolecules 34:1864

    Article  CAS  ADS  Google Scholar 

  • Werveyst B (1998) Numerical predictions of flow-induced fiber orientation in three dimensional geometries. PhD Thesis, Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Dubois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajabian, M., Naderi, G., Dubois, C. et al. Measurements and model predictions of transient elongational rheology of polymeric nanocomposites. Rheol Acta 49, 105–118 (2010). https://doi.org/10.1007/s00397-009-0395-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-009-0395-3

Keywords

Navigation