Skip to main content
Log in

Relaxation patterns of long, linear, flexible, monodisperse polymers: BSW spectrum revisited

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Theoretical predictions for the dynamic moduli of long, linear, flexible, monodisperse polymers are summarized and compared with experimental observations. Surprisingly, the predicted 1/2 power scaling of the long-time modes of the relaxation spectrum is not found in the experiments. Instead, scaling with a power of about 1/4 extends all the way up to the longest relaxation times near τ/τ max = 1. This is expressed in the empirical relaxation time spectrum of Baumgaertel-Schausberger-Winter, denoted as “BSW spectrum,” and justifies a closer look at the properties of the BSW spectrum. Working with the BSW spectrum, however, is made difficult by the fact that hypergeometric functions occur naturally in BSW-based rheological material functions. BSW provides no explicit solutions for the dynamic moduli, G (ω), G (ω), or the relaxation modulus G(t). To overcome this problem, close approximations of simple analytical form are shown for these moduli. With these approximations, analysis of linear viscoelastic data allows the direct determination of BSW parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel-Goad M, Pyckhout-Hintzen W, Kahle S, Allgaier J, Richter D, Fetters LJ (2004) Rheological properties of 1,4-polyisoprene over a large molecular weight range. Macromolecules 37:8135–8144

    Article  CAS  Google Scholar 

  • Abramowitz M, Stegun IA (1984) Pocketbook of mathematical functions. Verlag Harri Deutsch, Frankfurt/Main

    Google Scholar 

  • Baumgärtel M, Schausberger A, Winter HH (1990) The relaxation of polymers with linear flexible chains of uniform length. Rheol Acta 29:400–408

    Article  Google Scholar 

  • Baumgärtel M, Derosa ME, Machado J, Masse M, Winter HH (1992) The relaxation time spectrum of nearly monodisperse polybutadiene melts. Rheol Acta 31:75–82

    Article  Google Scholar 

  • Carri GA, Winter HH (1997) Mapping of the relaxation patterns of polymer melts with linear flexible molecules of uniform length. Rheol Acta 36:330–344

    CAS  Google Scholar 

  • Doi M (1974) Molecular theory of the viscoelastic properties of concentrated polymer solutions. Chem Phys Lett 26:269–272

    Article  CAS  Google Scholar 

  • Doi M (1981) Explanation for the 3.4 power law of viscosity of polymeric liquids on the basis of the tube model. J Polym Sci Polym Lett Ed 19:265

    Article  CAS  Google Scholar 

  • Doi M (1983) Explanation of the 3.4-power law for viscosity of polymeric liquids on the basis of the tube model. J Polym Sci Polym Phys 21:667–684

    Article  CAS  Google Scholar 

  • Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New York

    Google Scholar 

  • Garcia-Franco CA, Herrington BA, Lohse DJ (2005) On the rheology of ethylene-octene copolymers. Rheol Acta 44:591

    CAS  Google Scholar 

  • Jackson JK, De Rosa ME, Winter HH (1994) Molecular weight dependence of relaxation time spectra for the entanglement and flow behavior of monodisperse linear flexible polymers. Macromolecules 27:2426–2431

    Article  CAS  Google Scholar 

  • Milner ST, McLeish TCB (1998) Reptation and contour-length fluctuations in melts of linear polymers. Phys Rev Lett 81:725

    Article  CAS  Google Scholar 

  • Onogi S, Masuda T, Kitagawa K (1970) Rheological properties of anionic polystyrenes. I. Dynamic viscoelasticity of narrow distribution polystyrenes. Macromolecules 3:109

    Article  CAS  Google Scholar 

  • Schausberger A, Schindlauer G, Janeschitz-Kriegl H (1985) Rheol Acta 24:220

    Article  CAS  Google Scholar 

Download references

Acknowledgements

HHW acknowledges the support from DFG by SFB428 and support from MRSEC NSF DMR0213695. The authors thank W. Pyckhout-Hintzen for the sharing his PI data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Friedrich.

Appendices

Appendix 1: Asymptotes to the dynamic moduli

The approximate solution has to satisfy Eqs. 20 and 21 at low and at high frequencies, (ωτ max < <1) and (ωτ max > >1). The low frequency asymptotes of the dynamic moduli of BSW are

$$\begin{array}[b]{ll} &{\kern-5pt} G_{\omega \tau _{\max } <<1}^\prime \left( \omega \right)=\displaystyle\frac{n_{\rm e} }{2+n_{\rm e} }\;G_N^0 \left( {\omega \tau _{\max } } \right)^2;\\[17pt] &{\kern-5pt} G_{\omega \tau _{\max } <<1}^{\prime\prime} \left( \omega \right)=\displaystyle\frac{n_{\rm e} }{1+n_{\rm e} }G_N^0 \,\omega \tau _{\max } . \end{array}$$
(25)

The low-frequency asymptotes intersect at (see Fig. 5)

$$\omega _x =\displaystyle\frac{1}{\tau _{\max } }\frac{2+n_{\rm e} }{1+n_{\rm e} }.$$
(26)

The corresponding high frequency asymptotes are

$$\begin{array}{rll}G_{\omega \tau _{\max } >>1}^\prime \left( \omega \right)&=&\;G_N^0 ; \\ G_{\omega \tau _{\max } >>1}^{\prime\prime} \left( \omega \right)&=&\frac{{n_{\rm e} \pi } \mathord{\left/ {\vphantom {{n_{\rm e} \pi } 2}} \right. \kern-\nulldelimiterspace} 2}{\cos \left( {{n_{\rm e} \pi } \mathord{\left/ {\vphantom {{n_{\rm e} \pi } 2}} \right. \kern-\nulldelimiterspace} 2} \right)}G_N^0 \left( {\omega \tau _{\max } } \right)^{-n_{\rm e} }. \end{array}$$
(27)

Appendix 2: Incomplete gamma function for G(t) and approximate solution

For completeness, we present the approximation of the relaxation function obtained for BSW spectrum. Again, we start out with the expression of Carri and Winter (1997). The BSW-spectrum solution for Eq. 2,

$$G\left( t \right)=n_{\rm e} G_N^0 \left( {\frac{t}{\tau _{\max }^{\rm BSW} }} \right)^{n_{\rm e} }\Gamma \left( {-n_{\rm e} ,\frac{t}{\tau _{\max }^{\rm BSW} }} \right),$$
(28)

includes an incomplete Gamma function that can be replaced by a suitable approximation. The result is a polynomial expression multiplied by an exponential decay:

$$G\left( t \right)_{\rm app}\! =\!G_N^0 \!\left[\! {1\!+\!\left( {\frac{t}{n_{\rm e} \tau _{\max }^{\rm BSW} }}\!\! \right)^{\!\frac{\alpha n_{\rm e}^\beta }{3}}\!+\!\left( {\frac{t}{n_{\rm e} \tau _{\max }^{\rm BSW} }}\!\! \right)^{\!\alpha \,n_{\rm e}^\beta }}\! \right]^{-\frac{1}{\alpha n_{\rm e}^\beta }}\!\!e^{-\frac{t}{\tau _{\max }^{\rm BSW} }}\!.$$
(29)

An optimized fit is achieved with α = 1.23 and β = 0.18. The approximation is chosen such that the equation is an exact solution for the short time and the long time asymptotes (while neglecting the glass transition as stated in the beginning). These two limits are

$$G_{\rm app} \left( {t \mathord{\left/ {\vphantom {t {\tau _{\max } }}} \right. \kern-\nulldelimiterspace} {\tau _{\max } }<<1} \right)=G\left( {t \mathord{\left/ {\vphantom {t {\tau _{\max } }}} \right. \kern-\nulldelimiterspace} {\tau _{\max } }<<1} \right)=G_N^0 {, {\rm and}} $$
(30)
$$\begin{array}{rll}G_{\rm app} \left( {t \mathord{\left/ {\vphantom {t {\tau _{\max } }}} \right. \kern-\nulldelimiterspace} {\tau _{\max } }>>1} \right)&=&G\left( {t \mathord{\left/ {\vphantom {t {\tau _{\max } }}} \right. \kern-\nulldelimiterspace} {\tau _{\max } }>>1} \right) \\ &=&n_{\rm e} G_N^0 \,e^{-\;\frac{t}{\tau _{\max }^{{BSW}} }}\left( {\frac{t}{\tau _{\max }^{{BSW}} }} \right)^{-1}. \end{array}$$
(31)

Appendix 3: Same other interesting properties of BSW related moduli

The maximum of the loss modulus is a distinct data point from dynamic mechanical experiments. ω max is the particular frequency for which \(G^{\prime\prime}=G_{\max }^{\prime\prime} =G^{\prime\prime}(\omega_{\rm max})\). When predicted with BSW, \(G_{\max }^{\prime\prime} \) posses properties that resemble the Maxwell model:

$$\frac{G_{\max }^{\prime\prime} }{G_N^0 }=\frac{x_{\max } }{1+x_{\max }^2 }$$
(32)

with x max = ω max τ max. Although this equation is of Maxwellian structure, the Maxwell result is not recovered because, for the same material parameters, ω max is different for the Maxwell and the BSW spectra. Equation 32 can be derived from the integral equation for \(G_{\max }^{\prime\prime} \),

$$\frac{G_{\max }^{\prime\prime} }{G_N^0 }=n_{\rm e} x_{\max }^{-n{ }_{\rm e}} \;\int\limits_0^{x_{\max } } {dx\frac{x^{n_{\rm e} }}{1+x^2}} ,$$
(33)

together with the defining equation for the abscissa. The condition \({{d}G^{\prime\prime}} \mathord{\!\left/\! {\vphantom {{{d}G^{\prime\prime}} {\left. {{d}\omega } \right|_{\omega =\omega \max } }}} \right. \kern-\nulldelimiterspace} {\left. {{d}\omega } \right|_{\omega =\omega \max } }=0\) results in

$$-n_{\rm e} x_{\max }^{-1-n_{\rm e} } \int\limits_0^{x_{\max } } {dx\frac{x^{n_{\rm e} }}{1+x^2}} +\frac{1}{1+x_{\max }^2 }=0.$$
(34)

The solution of Eq. 34 results in the value for x max. For this purpose, we substitute the integral by the corresponding hypergeometric function and then transform the equation to receive the following result:

$$F\left( {1,1;\frac{n_{\rm e} +3}{2};\frac{x_{\max }^2 }{1+x_{\max }^2 }} \right)=\frac{n_{\rm e} +1}{n_{\rm e} }.$$
(35)

Again, we approximate the hypergeometric function by a simpler function and arrive at

$$\left( {1+\left( {1+n_{\rm e} } \right)x_{\max }^2 } \right)^{0.5}\cong \frac{n_{\rm e} +1}{n_{\rm e} },$$
(36)

which leads to an explicit expression for x max:

$$x_{\max } \cong \frac{1}{n_{\rm e} }\sqrt {\frac{2n_{\rm e} +1}{n_{\rm e} +1}} \approx \frac{1}{n_{\rm e} }.$$
(37)

Together with Eq. 32, we obtain the final result:

$$\frac{G_{\max }^{\prime\prime} }{G_N^0 }=\frac{n_{\rm e} \left( {1+n_{\rm e} } \right)^{0.5}\left( {1+2n_{\rm e} } \right)^{0.5}}{1+2n_{\rm e} +n_{\rm e}^2 +n_{\rm e}^3 },$$
(38)

or

$$\frac{G_{\max }^{\prime\prime} }{G_N^0 }\approx \frac{n_{\rm e} }{1+n_{\rm e}^2 }$$
(39)

that relates the value of the plateau modulus to the maximal value of the G for a known relaxation exponent n e.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedrich, C., Waizenegger, W. & Winter, H.H. Relaxation patterns of long, linear, flexible, monodisperse polymers: BSW spectrum revisited. Rheol Acta 47, 909–916 (2008). https://doi.org/10.1007/s00397-008-0280-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-008-0280-5

Keywords

Navigation