Skip to main content
Log in

Linear rheology of compressible soft nanocomposites

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The influences of interfacial tension and compressibility to the linear viscoelastic properties of nanocomposite and nanoporous materials are considered theoretically. The effective bulk and shear moduli of the systems are calculated within the generalized composite sphere model which takes into account the effect of interfacial tension. It is found that frequency dependence of the effective dynamic shear and bulk moduli of nanocomposites with the compressible elastic matrix and viscous inclusions may be represented in terms of the Zener model comprising of the viscoelastic Kelvin element in series with the elastic spring. The relations of the Zener model parameters with the material characteristics are revealed. The physical interpretation of the frequency behavior of the dynamic shear and bulk moduli against the interfacial tension, component compressibility, viscosity, and inclusion volume fraction is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ballauff M, Lu Y, Christian DA, Discher DE (2007) “Smart” nanoparticles: preparation, characterization and applications. Polymer 48:1815–1823

    Article  CAS  Google Scholar 

  • Bousmina M (1999) Effect of interfacial tension on linear viscoelastic behavior of immiscible polymer blends. Rheol Acta 38:251–254

    Article  CAS  Google Scholar 

  • Chen J, Park H, Park K (1999) Synthesis of superporous hydrogels: hydrogels with fast swelling and superabsorbent properties. J Biomed Mater Res 44:53–62

    Article  CAS  Google Scholar 

  • Christensen RM (1979) Mechanics of composite materials. Wiley, New York

    Google Scholar 

  • Dou H, Jiang M, Peng H, Chen D, Hong Y (2003) pH-dependent self-assembly: micellization and micelle-hollow-sphere transition of cellulose-based copolymers. Angew Chem 42:1516–1519

    Article  CAS  Google Scholar 

  • Graebling D, Muller R, Palierne JF (1993) Linear viscoelastic behavior of some incompressible polymer blends in the melt. Interpretation of data with a model of emulsion of viscoelastic liquids. Macromolecules 26:320–329

    Article  CAS  Google Scholar 

  • Hashin Z (1962) The elastic moduli of heterogeneous materials. J Appl Mech 29:143

    CAS  Google Scholar 

  • Jang J, Bae J (2005) Fabrication of mesoporous polymer using soft template method. Chem Commun 1200–1202

  • Jeong U, Ryu DY, Kim JK, Kim DH, Russell TP, Hawker CJ (2003) Volume contractions induced by crosslinking: a novel route to nanoporous polymer films. Adv Mater 15:1247–1250

    Article  CAS  Google Scholar 

  • Kabiri K, Zohuriaan-Mehr MJ, Park K (2004) Porous superabsorbent hydrogel composites: synthesis, morphology and swelling. Macromol Mater Eng 289:653–661

    Article  CAS  Google Scholar 

  • Kim D, Park K (2004) Swelling and mechanical properties of superporous hydrogels of poly(acrylamide-co-acrylic acid)/polyethylenimine interpenetrating polymer networks. Polymer 45:189–196

    Article  CAS  Google Scholar 

  • Krause B, Diekmann K, van der Vegt NFA, Wessling M (2002) Open nanoporous morphologies from polymeric blends by carbon dioxide foaming. Macromolecules 35:1738–1745

    Article  CAS  Google Scholar 

  • Li Q, Quinn JF, Caruso F (2005) Nanoporous polymer thin films via polyelectrolyte templating. Adv Mater 17:2058–2062

    Article  CAS  Google Scholar 

  • Likos CN (2006) Soft matter with soft particles. Soft Matter 2:478–498

    Article  CAS  Google Scholar 

  • Liu L, Li P, Asher SA (1999) Entropic trapping of macromolecules by mesoscopic periodic voids in a polymer hydrogel. Nature 397(6715):141–144

    Article  CAS  Google Scholar 

  • Meier W (2000) Polymer nanocapsules. Chem Soc Rev 29:295–303

    Article  CAS  Google Scholar 

  • Milao D, Knorst MT, Richter W, Guterres SS (2003) Hydrophilic gel containing nanocapsules of diclofenac: development, stability study and physico-chemical characterization. Pharmazie 58:325–329

    CAS  Google Scholar 

  • Nayak S, Lyon LA (2005) Soft nanotechnology with soft nanoparticles. Angew Chem 44:7686–7708

    Article  CAS  Google Scholar 

  • Oldroyd RG (1953) The elastic and viscous properties of emulsions and suspensions. Proc R Soc Lond A 218:122

    Article  CAS  Google Scholar 

  • Omidian H, Rocca JG, Park K (2005) Advances in superporous hydrogels. J Control Release 102:3–12

    Article  CAS  Google Scholar 

  • Pal R (2002) Novel shear modulus equations for concentrated emulsions of immiscible elastic liquids with interfacial tension. J Non-Newton Fluid Mech 105:21–33

    Article  CAS  Google Scholar 

  • Palierne JF (1990) Linear rheology of viscoelastic emulsions with interfacial tension. Rheol Acta 29:204–214

    Article  CAS  Google Scholar 

  • Patel F, Amiji MM (1996) Preparation and characterization of freeze-dried chitozan-poly (ethylene oxide) hydrogels for site-specific antibiotic delivery in stomach. Pharm Res 13:588–593

    Article  CAS  Google Scholar 

  • Raman VI, Palmese GR (2005) Nanoporous thermosetting polymers. Langmuir 21:1539–1546

    Article  CAS  Google Scholar 

  • Sahiner N, Alb AM, Graves R, Mandal T, McPherson GL, Reed WF, John VT (2007) Core-shell nanohydrogel structures as tunable delivery systems. Polymer 48:704–711

    Article  CAS  Google Scholar 

  • Sayil C, Okay O (2001) Macroporous poly(N-isopropyl)acrylamide networks: formation conditions. Polymer 42:7639–7652

    Article  CAS  Google Scholar 

  • Seki K, Komura S (1995) Viscoelasticity of vesicle dispersions. Physica A 219:253–289

    Article  CAS  Google Scholar 

  • Shermergor TD (1977) Elastic theory of micro-heterogeneous materials. Nauka, Moscow

    Google Scholar 

  • Zhang J-T, Cheng S-X, Huang S-W, Zhuo R-X (2003) Temperature sensitive poly(N-isopropylacrylamide) hydrogels with macroporous structure and fast response rate. Macromol Rapid Commun 24:447–451

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Russian Foundation of Basic Research (Grant No. 06-03-32208-а).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav A. Patlazhan.

Additional information

Victor G. Oshmyan deceased.

Appendix

Appendix

The components of the stress tensor can be obtained by substitution of Eqs. 1, 19, and 20 to the relationship \(\sigma _{kl} = C_{klpq} \varepsilon _{pq} \). In the arbitrary point of the shell, they can be represented as follows:

$$\begin{array}{*{20}l} {\sigma _{rr}^{\left( m \right)} = 2G_m \left( {2A_1^{\left( m \right)} - A_2^{\left( m \right)} r^2 + 4\frac{{v_m - 5}}{{5 - 4v_m }}\frac{{A_3^{\left( m \right)} }}{{r^3 }} - 8\frac{{A_4^{\left( m \right)} }}{{r^5 }}} \right)\left( {\cos ^2 \theta - \frac{1}{2}\sin ^2 \theta } \right)} \hfill \\ {\sigma _{r\theta }^{\left( m \right)} = 2G_m \left( { - 3A_1^{\left( m \right)} - \frac{{2v_m + 7}}{{2v_m }}A_2^{\left( m \right)} r^2 - 6\frac{{1 + v_m }}{{5 - 4v_m }}\frac{{A_3^{\left( m \right)} }}{{r^3 }} - 8\frac{{A_4^{\left( m \right)} }}{{r^5 }}} \right)\sin \theta \cos \theta } \hfill \\ \end{array} .$$
(32)

In the inclusion, the stresses are:

$$\begin{array}{*{20}l} {\sigma _{rr}^{\left( i \right)} = 2\overline G _i \left( {2A_1^{\left( i \right)} - A_2^{\left( i \right)} r^2 } \right)\left( {\cos ^2 \theta - \frac{1}{2}\sin ^2 \theta } \right)} \hfill \\ {\sigma _{r\theta }^{\left( i \right)} = 2\overline G _i \left( { - 3A_1^{\left( i \right)} - \frac{{2\overline v _i + 7}}{{2\overline v _i }}A_2^{\left( i \right)} r^2 } \right)\sin \theta \cos \theta } \hfill \\ \end{array} .$$
(33)

Substitution of Eqs. 14, 32, and 33 to the boundary conditions 12 and 13 gives the following set of equations for the unknown coefficients \(A_p^{\left( m \right)} \) and \(A_p^{\left( i \right)} \):

$$\begin{array}{*{20}l} {A_1^{\left( m \right)} R + A_2^{\left( m \right)} R^3 + \frac{{A_3^{\left( m \right)} }}{{R^2 }} + \frac{{A_4^{\left( m \right)} }}{{R^4 }} = R} \hfill \\ { - 3A_1^{\left( m \right)} R + A_2^{\left( m \right)} \left( {2 - \frac{7}{{2v_m }}} \right)R^3 + 6\frac{{A_3^{\left( m \right)} }}{{R^2 }}\frac{{2v_m - 1}}{{5 - 4v_m }} + 2\frac{{A_4^{\left( m \right)} }}{{R^4 }} = - 3R} \hfill \\ {A_1^{\left( m \right)} a + A_2^{\left( m \right)} a^3 + \frac{{A_3^{\left( m \right)} }}{{a^2 }} + \frac{{A_4^{\left( m \right)} }}{{a^4 }} - A_1^{\left( i \right)} a - A_2^{\left( i \right)} a^3 = 0} \hfill \\ { - 3A_1^{\left( m \right)} a + A_2^{\left( m \right)} \left( {2 - \frac{7}{{2v_m }}} \right)a^3 + 6\frac{{A_3^{\left( m \right)} }}{{a^2 }}\frac{{2v_m - 1}}{{5 - 4v_m }} + 2\frac{{A_4^{\left( m \right)} }}{{a^4 }}} \hfill \\ { + 3A_1^{\left( i \right)} a - \left( {2 - \frac{7}{{2\bar v_i }}} \right)A_2^{\left( i \right)} a^3 = 0} \hfill \\ {G_m \left( {2A_1^{\left( m \right)} a - A_2^{\left( m \right)} a^3 + 4\frac{{A_3^{\left( m \right)} }}{{a^2 }}\frac{{v_m - 5}}{{5 - 4v_m }} - 8\frac{{A_4^{\left( m \right)} }}{{a^4 }}} \right) - \overline G _i \left( {2A_1^{\left( i \right)} a - A_2^{\left( i \right)} a^3 } \right) = 0} \hfill \\ {G_m \left[ { - 6A_1^{\left( m \right)} a - A_2^{\left( m \right)} \left( {2 + \frac{7}{{v_m }}} \right)a^3 - 12\frac{{A_3^{\left( m \right)} }}{{a^2 }}\frac{{1 + v_m }}{{5 - 4v_m }} - 16\frac{{A_4^{\left( m \right)} }}{{a^4 }}} \right]} \hfill \\ { + \overline G _i \left[ {6A_1^{\left( i \right)} a + \left( {2 + \frac{7}{{v_i }}} \right)A_2^{\left( i \right)} a^3 } \right] = 0} \hfill \\ \end{array} .$$
(34)

Further calculation of the effective shear modulus with help of Eq. 17 requires only three coefficients, \(A_1^{\left( m \right)} \), \(A_2^{\left( m \right)} \), and \(A_3^{\left( m \right)} \). The solution of Eq. 34 gives:

$$\begin{aligned}&A_1^{\left( m \right)} = \left\{ {\overline G _i^2 \left( {7 + 5\overline v _i } \right)\left[ {2\left( {10v_m - 7} \right)\left( {10v_m - 8} \right)R^7 + 63a^5 R^2 - 25\left( {7 - 12v_m + 8v_m^2 } \right)a^7 } \right]} \right. \\&+ \overline G _i G_m \left[ {2\left( {10v_m - 7} \right)\left( {\left( {5v_m - 7} \right)\left( {7 + 5\overline v _i } \right) + 4\left( {10v_m - 8} \right)\left( {7 - 10\overline v _i } \right)} \right)R^7 } \right. \\&\left. { + 189\left( {7 - 15\overline v _i } \right)a^5 R^2 + 25\left( {49\overline v _i - 49 + 66\overline v _i v_m + 42v_m - 56v_m^2 + 20\overline v _i v_m^2 } \right)a^7 } \right] \\&\left. { + 2G_m^2 \left( {7 - 10\overline v _i } \right)\left[ {4\left( {10v_m - 7} \right)\left( {5v_m - 7} \right)R^7 - 126a_k^5 R_k^2 - 25v_m \left( {v_m^2 - 7} \right)a^7 } \right]} \right\}R^3 D^{\left( m \right)} \\ \end{aligned} $$
(35)
$$A_2^{\left( m \right)} = - 90\left[ {\overline G _i^2 \left( {7 + 5\overline v _i } \right) + 3\overline G _i G_m \left( {7 - 15\overline v _i } \right) - 4G_m^2 \left( {7 - 10\overline v _i } \right)} \right]\left( {R^2 - a^2 } \right)R^3 a^3 \overline v _i D^{\left( m \right)} $$
(36)
$$\begin{aligned}&A_3^{\left( m \right)} = - 5\left( {4v_m - 5} \right)\left\{ {\overline G _i^2 \left( {7 + 5\overline v _i } \right)\left( {10v_m - 7} \right)\left( {R^7 - a^7 } \right)} \right. \\&+ \overline G _i G_m \left[ {3\left( {10v_m - 7} \right)\left( {7 - 15\overline v _i } \right)R^7 + \left( {100\overline v _i v_m + 35\overline v _i + 35v_m - 98} \right)a^7 } \right] \\&\left. { + G_m^2 \left( {10\overline v _i - 7} \right)\left[ {4\left( {10v_m - 7} \right)R^7 - \left( {7 + 5v_m } \right)a^7 } \right]} \right\}R^3 a^3 D^{\left( m \right)} \\ \end{aligned} $$
(37)

where \(D^{\left( m \right)} \) satisfies the following expression:

$$\begin{aligned}&D^{\left( m \right)} = \left\{ {\overline G _i^2 \left( {7 + 5\overline v _i } \right)\left[ {2\left( {10v_m - 7} \right)\left( {10v_m - 8} \right)R^{10} } \right.} \right. \\&+ 126\left( {7 + 5\overline v _i } \right)a^5 R^5 - 25\left( {7 - 12v_m + 8v_m^2 } \right)a^3 R^7 - 25\left( {7 - 12v_m + 8v_m^2 } \right)a^7 R^3 \\&\left. { + 4\left( {5v_m - 4} \right)\left( {10v_m - 7} \right)a^{10} } \right] \\&+ \overline G _i G_m \left[ { - 6\left( {10v_m - 7} \right)\left( {\left( {5v_m - 7} \right)\left( {7 + 5\overline v _i } \right) + 4\left( {10v_m - 8} \right)\left( {7 - 10\overline v _i } \right)} \right)R^{10} } \right. \\&- 75\left( {7 - 15\overline v _i } \right)\left( {7 - 12v_m + 8v_m^2 } \right)a^3 R^7 + 378\left( {7 - 15\overline v _i } \right)a^5 R^5 \\&+ 25\left( {49\overline v _i - 49 + 66\overline v _i v_m + 42v_m - 56v_m^2 + 20\overline v _i v_m^2 } \right)a^7 R^3 \\&\left. { - \left( {5v_m - 4} \right)\left( {100\overline v _i v_m + 35\overline v _i + 35v_m - 98} \right)a^{10} } \right] \\&+ 2G_m^2 \left( {7 - 10\overline v _i } \right)\left[ {4\left( {10v_m - 7} \right)\left( {5v_m - 7} \right)R^{10} + 50\left( {7 - 12v_m + 8v_m^2 } \right)a^3 R^7 } \right. \\&\left. { - 252a^5 R^5 - 25\left( {v_m^2 - 7} \right)a^7 R^3 - 2\left( {5v_m - 4} \right)\left( {7 + 5v_m } \right)a^{10} } \right\}^{ - 1} \\ \end{aligned} $$
(38)

Substituting Eqs. 35, 36, and 37 to Eq. 23 we arrive at Eq. 24 with the following notations:

$$N\left( {G_m ,\overline G _i ,v_m ,\overline v _i ,\Phi } \right) = (1 - \overline v _i )\left( {N_1 \Phi ^{{7 \mathord{\left/ {\vphantom {7 3}} \right. \kern-\nulldelimiterspace} 3}} + N_2 } \right)$$
(39)
$$N_1 = \left( {50\overline v _i v_m - 49} \right)\left( \,{\overline G _i - G_m } \right) + 70\left(\, {\overline G _i v_m - G_m \overline v _i } \right) + 35\left( {G_m v_m - \overline G _i \overline v _i } \right)$$
(40)
$$N_2 = \left( {7 - 10v_m } \right)\left[ \,{\overline G _i \left( {5\overline v _i + 7} \right) + 4G_m \left( {7 - 10\overline v _i } \right)} \right]$$
(41)
$$D\left( {G_m ,\bar G_k ,v_m ,\bar v_i ,\Phi } \right) = 4\left( {\bar G_k - G_m } \right)\left( {5v_m - 4} \right)N_1 \Phi ^{{{10} \mathord{\left/ {\vphantom {{10} 3}} \right. \kern-\nulldelimiterspace} 3}} + D_2 \Phi ^{{7 \mathord{\left/ {\vphantom {7 3}} \right. \kern-\nulldelimiterspace} 3}} + D_3 \Phi ^{{5 \mathord{\left/ {\vphantom {5 3}} \right. \kern-\nulldelimiterspace} 3}} + D_4 \Phi + D_5 $$
(42)
$$D_2 = 25\left\{ { - \left( {7 + 8v_m^2 - 12v_m } \right)\left( {7 + 5\bar v_i } \right)\bar G_i^2 + \left( {\left( {20v_m^2 + 66v_m - 49} \right)\bar v_i - 56v_m^2 + 42v_m - 49} \right)\bar G_i G_m + 2\left( {7 - v_m^2 } \right)\left( {7 - 10\bar v_i } \right)G_m^2 } \right.$$
(43)
$$D_3 = 126\left( {\bar G_i - G_m } \right)\left[ {\bar G_i \left( {5\bar v_i + 7} \right) + 4G_m \left( {7 - 10\bar v_i } \right)} \right]$$
(44)
$$D_4 = - 25\left( {7 - 12v_m + 8v_m^2 } \right)\left( {\bar G_i - G_m } \right)\left[ {\bar G_i \left( {5\bar v_i + 7} \right) + 4G_m \left( {7 - 10\bar v_i } \right)} \right]$$
(45)
$$D_5 = 2\left( {7 - 10v_m } \right)\left[ {2\bar G_i \left( {4 - 5v_m } \right) + G_m \left( {7 - 5v_m } \right)} \right]\left[ {\bar G_i \left( {7 + 5\bar v_i } \right) + 4G_m \left( {7 - 10\bar v_i } \right)} \right]$$
(46)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oshmyan, V.G., Patlazhan, S.A. & Khokhlov, A.R. Linear rheology of compressible soft nanocomposites. Rheol Acta 47, 359–368 (2008). https://doi.org/10.1007/s00397-008-0270-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-008-0270-7

Keywords

Navigation