Skip to main content
Log in

Rheological characterization and constitutive modeling of bread dough

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Bread dough (a flour–water system) has been rheologically characterized using a parallel-plate, an extensional, and a capillary rheometer at room temperature. Based on the linear and nonlinear viscoelastic and viscoplastic data, two constitutive equations have been applied, namely a viscoplastic Herschel–Bulkley model and a viscoelastoplastic K–BKZ model with a yield stress. For cases where time effects are unimportant, the viscoplastic Herschel–Bulkley model can be used. For cases where transient effects are important, it is more appropriate to use the K-BKZ model with the addition of a yield stress. Finally, the wall slip behavior of dough was studied in capillary flow, and an appropriate slip law was formulated. These models characterize the rheological behavior of bread dough and constitute the basic ingredients for flow simulation of dough processing, such as extrusion, calendering, and rolling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Aichholzer W, Fritz H-G (1998) Rheological characterization of thermoplastic starch materials. Starch-Starke 50:77–83

    Article  CAS  Google Scholar 

  • Bagley EB, Christianson DD, Martindale JA (1988) Uniaxial compression of a hard wheat flour dough. J Texture Stud 19:289–305

    Article  Google Scholar 

  • Bagley EB, Dintzis FR, Chakrabarti S (1998) Experimental and conceptual problems in the rheological characterization of wheat flour doughs. Rheol Acta 37:556–565

    Article  CAS  Google Scholar 

  • Baumgaertel M, Winter HH (1989) Determination of discrete relaxation and retardation time spectra from dynamic mechanical data. Rheol Acta 28:511–519

    Article  CAS  Google Scholar 

  • Bernstein B, Kearsley EA, Zapas L (1963) A study of stress relaxations with finite strain. Trans Soc Rheol 7:391–410

    Article  Google Scholar 

  • Beverly CR, Tanner RI (1989) Numerical analysis of extrudate swell in viscoelastic materials with yield stress. J Rheol 33:989–1009

    Article  CAS  Google Scholar 

  • Bistany KL, Kokini JL (1983) Dynamic viscoelastic properties of foods in texture control. J Rheol 27:605–620

    Article  Google Scholar 

  • Chambon F, Winter HH (1987) Linear viscoelasticity at the gel point of a cross linking PDMS with imbalanced stoichiometry. J Rheol 31:683–697

    Article  CAS  Google Scholar 

  • Charalambides MN, Wanigasooriya L, Williams JG, Goh SM, Chakrabarti S (2006) Large deformation extensional rheology of bread dough. Rheol Acta 46:239–248

    Article  CAS  Google Scholar 

  • Cohen Y, Metzner AB (1985) Apparent slip flow of polymer solutions. J Rheol 29:67–102

    Article  CAS  Google Scholar 

  • Corfield GM, Adams MJ, Briscoe BJ, Fryer PJ, Lawrence CJ (1999) A critical examination of capillary rheometry for foods (exhibiting wall slip). Food Bioprod Process 77:3–10

    Article  Google Scholar 

  • Cuq B, Yildiz E, Kokini J (2002) Influence of mixing conditions and rest time on capillary flow behavior of wheat flour dough. Cereal Chem 79:129–137

    Article  CAS  Google Scholar 

  • Dealy JM, Wissbrun KF (1990) Melt rheology and its role in plastics processing. Van Nostrand-Reinhold, New York

    Google Scholar 

  • Dobraszczyk BJ, Morgenstern MP (2003) Rheology and the breadmaking process. J Cereal Sci 38:229–245

    Article  CAS  Google Scholar 

  • Dobraszczyk BJ, Roberts CA (1994) Strain hardening and dough gas cell-wall failure in biaxial extension. J Cereal Sci 20:265–274

    Article  Google Scholar 

  • Doraiswamy D, Mujumdar AN, Tsao I, Beris AN, Danforth SC, Metzner AB (1991) The Cox–Merz rule extended: a rheological model for concentrated suspensions and other materials with a yield stress. J Rheol 35:647–685

    Article  CAS  Google Scholar 

  • Engmann J, Peck MC, Wilson DI (2005) An experimental and theoretical investigation of bread dough sheeting. Food Bioprod Process 83(C3):175–184

    Article  Google Scholar 

  • Geiger K (1989) Rheologische characterisierung von EPDM Kautschukmischungen Mittels Kapillar-Rheometer Systemen. Kaut Gummi Kunstst 42:273–283

    CAS  Google Scholar 

  • Gras PW, Carpenter HC, Anderssen RS (2000) Modelling the developmental rheology of wheat-flour dough using extension tests. J Cereal Sci 31:1–13

    Article  CAS  Google Scholar 

  • Halliday PJ, Smith AC (1995) Estimation of the wall slip velocity in the capillary flow of potato granule pastes. J Rheol 39:139–149

    Article  CAS  Google Scholar 

  • Huang H, Kokini JL (1993) Measurement of biaxial extensional viscosity of wheat flour doughs. J Rheol 37:879–891

    Article  CAS  Google Scholar 

  • Kajiwara T, Barakos G, Mitsoulis E (1995) Rheological characterization of polymer solutions and melts with an integral constitutive equation. Int J Polym Anal Charact 1:201–215

    Article  CAS  Google Scholar 

  • Keentok M, Newberry MP, Gras P, Bekes F, Tanner RI (2002) The rheology of bread dough made from four commercial flours. Rheol Acta 41:173–179

    Article  CAS  Google Scholar 

  • Kokelaar JJ, van Vliet T, Prins A (1996) Strain hardening properties and extensibility of flour and gluten doughs in relation to breadmaking performance. J Cereal Sci 24:199–214

    Article  Google Scholar 

  • Lefebvre J (2006) An outline of the non-linear viscoelastic behaviour of wheat flour dough in shear. Rheol Acta 45:525–538

    Article  CAS  Google Scholar 

  • Lefebvre J, Mahmoodi N (2006) The pattern of the linear viscoelastic behaviour of wheat flour dough as delineated from the effects of water content and high molecular weight glutenin subunits composition. J Cereal Sci 45:49–58

    Article  Google Scholar 

  • Luo X-L, Tanner RI (1988) Finite element simulation of long and short circular die extrusion experiments using integral models. Int J Numer Methods Eng 25:9–22

    Article  Google Scholar 

  • Mitsoulis E, Abdali SS, Markatos NC (1993) Flow simulation of Herschel–Bulkley fluids through extrusion dies. Can J Chem Eng 71:147–160

    Article  CAS  Google Scholar 

  • Mitsoulis E, Sofou S (2006) Calendering pseudoplastic and viscoplastic fluids with slip at the roll surface. J Appl Mech 73:291–299

    Article  Google Scholar 

  • Mooney M (1931) Explicit formulas for slip and fluidity. J Rheol 2:210–222

    Article  CAS  Google Scholar 

  • Morgenstern MP, Newberry MP, Holst SE (1996) Extensional properties of dough sheets. Cereal Chem 73:478–482

    CAS  Google Scholar 

  • Mourniac Ph, Agassant J-F, Vergnes B (1992) Determination of the wall slip velocity in the flow of a SBR compound. Rheol Acta 31:565–574

    Article  CAS  Google Scholar 

  • Muliawan EB, Hatzikiriakos SG (2007) Rheology of mozzarella cheese. Int Dairy J 17:1063–1072

    Article  Google Scholar 

  • Ng TSK, Padmanabhan M, McKinley GH (2006a) Constitutive modelling of the linear and nonlinear rheology of flour-water doughs and other complex entangled materials. SOR Ann Meet, Portland, ME, USA

    Google Scholar 

  • Ng TSK, McKinley GH, Padmanabhan M (2006b) Linear to non-linear rheology of wheat flour dough. Appl Rheol 16:265–274

    Google Scholar 

  • Ng TSK, McKinley GH (2007) Power law gels at finite strains. J Rheol 52 (in press)

  • Papanastasiou AC, Scriven LE, Macosco CW (1983) An integral constitutive equation for mixed flows: viscoelastic characterization. J Rheol 27:387–410

    Article  CAS  Google Scholar 

  • Phan-Thien N, Safari-Ardi M (1988) Linear viscoelastic properties of flour–water doughs at different water concentrations. J Non-Newton Fluid Mech 74:137–150

    Article  Google Scholar 

  • Phan-Thien N, Safari-Ardi M, Morales-Patino A (1997) Oscillatory and simple shear flows of a flour-water dough: a constitutive model. Rheol Acta 36:38–48

    Article  CAS  Google Scholar 

  • Rouille J, Della Valle G, Lefebvre J, Sliwinski E, vanVliet T (2005) Shear and extensional properties of bread doughs affected by their minor components. J Cereal Sci 42:45–57

    Article  Google Scholar 

  • Sentmanat ML (2003) Dual windup extensional rheometer. US Patent no. 6,578,413

  • Sentmanat ML (2004) Miniature universal testing platform: from extensional melt rheology to solid state deformation behaviour. Rheol Acta 43:657–699

    Article  CAS  Google Scholar 

  • Sliwinski EL, Kolster P, van Vliet T (2004) Large-deformation properties of wheat dough in uni- and biaxial extension, Part I. Flour dough. Rheol Acta 43:306–320

    CAS  Google Scholar 

  • Sofou S, Mitsoulis E (2004a) Calendering of pseudoplastic and viscoplastic sheets of finite thickness. J Plast Film Sheeting 20:185–222

    Article  CAS  Google Scholar 

  • Sofou S, Mitsoulis E (2004b) Calendering of pseudoplastic and viscoplastic fluids using the lubrication approximation. J Polym Eng 24:505–522

    CAS  Google Scholar 

  • Tanner RI, Qi F, Dai S-C (2007a) Bread dough rheology and recoil 1. Rheology. J Non-Newton Fluid Mech (in press). DOI 10.1016/j.jnnfm.2007.04.006

  • Tanner RI, Dai S-C, Qi F (2007b) Bread dough rheology and recoil 2. Recoil and relaxation. J Non-Newton Fluid Mech 143:107–119

    Article  CAS  Google Scholar 

  • Vlachopoulos J, Hrymak AN (1980) Calendering poly(vinyl chloride): theory and experiments. Polym Eng Sci 20:725–731

    Article  CAS  Google Scholar 

  • Wikstrom K, Bohlin L (1999) Extensional flow studies of wheat flour dough. I. Experimental method for measurements in contraction flow geometry and application to flours varying in breadmaking performance. J Cereal Sci 29:217–226

    Article  Google Scholar 

  • Winter HH, Chambon F (1986) Analysis of linear viscoelasticity of a cross linking polymer at the gel point. J Rheol 30:367–382

    Article  CAS  Google Scholar 

  • Yu C, Gunasekaran S (2001) Correlation of dynamic and steady flow viscosities of food materials. Appl Rheol 11:134–140

    Google Scholar 

  • Zheng H, Morgenstern MP, Campanella OH, NG Larsen NG (2000) Rheological properties of dough during mechanical dough development. J Cereal Sci 32:293–306

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Financial assistance from the Natural Sciences and Engineering Research Council (NSERC) of Canada and the “PIAM” European project (contract no. NMP2-CT-2003-505878) are gratefully acknowledged. Permission to use the farinograph at BCIT (British Columbia Institute of Technology) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savvas G. Hatzikiriakos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sofou, S., Muliawan, E.B., Hatzikiriakos, S.G. et al. Rheological characterization and constitutive modeling of bread dough. Rheol Acta 47, 369–381 (2008). https://doi.org/10.1007/s00397-007-0248-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-007-0248-x

Keywords

Navigation