Skip to main content
Log in

Monodomain response of finite-aspect-ratio macromolecules in shear and related linear flows

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract.

Recent extensions of the Doi kinetic theory for monodisperse nematic liquids describe rigid, axisymmetric, ellipsoidal macromolecules with finite aspect ratio. Averaging and presumed linear flow fields provide tensor dynamical systems for mesoscopic, bulk orientation response, parameterized by molecular aspect ratio. In this paper we explore phenomena associated with finite vs infinite aspect ratios, which alter the most basic features of monodomain attractors: steady vs unsteady, in-plane vs out-of-plane, multiplicity of attracting states, and shear-induced transitions. For example, the Doi moment-closure model predicts a period-doubling cascade in simple shear to a chaotic monodomain attractor for aspect ratios around 3:1 or 1:3, similar to full kinetic simulations by Grosso et al. [Grosso M, Keunings R, Crescitelli S, Maffettone PL (2001), Prediction of chaotic dynamics in sheared liquid crystalline polymers. Preprint (2001) and lecture, Society of Rheology Annual Meeting, Hilton Head, SC, February 2001] for infinite aspect ratios. We develop symmetries of mesoscopic tensor models robust to closure approximations but specific to linear flow fields, and analytical methods to determine:

  • The entire monodomain phase diagram of a finite-aspect-ratio nematic fluid in a linear flow field is equivalent to the phase diagram of an infinite-aspect-ratio fluid (thin rods or discs) in a related linear velocity field.

  • Rod-like and discotic macromolecules with reciprocal aspect ratios have equivalent bulk shear response, related by a simple director transformation.

  • Out-of-plane, shear-induced monodomains (steady and transient) either are symmetric about the shearing plane (e.g., logrolling and kayaking modes), or occur in pairs mirror-symmetric about the shearing plane (out-of-plane steady and periodic "tilted kayaking" modes), revealing a symmetry mechanism for bi-stability.

  • A tensor analog of the Leslie alignment vs tumbling criterion, which is developed and applied to predict the multiplicity, stability, and steady or transient property of shear-induced monodomains.

Simulations highlight the degree to which scaling properties of Leslie-Ericksen theory are violated. By varying molecular aspect ratio, any shear-induced monodomain is reproducible among the well-known closure approximations, yet no single closure rule suffices to capture all known attractors and transition scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

References

  1. Alderman NJ, Mackley MR (1985) Mol Cryst Liq Cryst 79:149

    CAS  Google Scholar 

  2. Andrews NC, Edwards BJ, McHugh AJ (1995) J Rheol 39:1161

    Article  CAS  Google Scholar 

  3. Andrews NC, Edwards BJ, McHugh AJ (1996) J Rheol 40(3):459

    Article  CAS  Google Scholar 

  4. Archer L, Larson RG (1995) J Chem Phys 103:3108

    Article  CAS  Google Scholar 

  5. Atkin RJ (1970) Arch Ration Mech Anal 38:224

    Article  Google Scholar 

  6. Baek SG, Magda JJ, Larson RG (1993) J Rheol 37:1201

    Article  CAS  Google Scholar 

  7. Baek SG, Magda JJ, Larson RG (1994) J Rheol 38:1473

    Article  CAS  Google Scholar 

  8. Bandyopadhyay R, Basappa G, Sood AK (2000) Phys Rev Lett 84(9):2022

    Article  CAS  Google Scholar 

  9. Batchelor GK (1970) J Fluid Mech 41(3):545

    Article  Google Scholar 

  10. Beris AN, Edwards BJ (1994) Thermodynamics of flowing systems with internal microstructure. Oxford Science Publications

  11. Berry GC (1988) Mol Cryst Liq Cryst 165:333

    Google Scholar 

  12. Berry GC (1991) J Rheol 35:943

    Article  CAS  Google Scholar 

  13. Berry GC, Tan Z (2001) Rheological and rheo-optical studies of shear deformation on nematic solutions of poly(1,2-PET). Preprint. Univ of Pittsburgh

  14. Bhave AV, Menon RK, Armstrong RC, Brown RA (1993) J Rheol 37:413

    Article  CAS  Google Scholar 

  15. Bird B, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids, vols 1 and 2. Wiley

  16. Boudreau DM, Winter HH, Lillya CP, Stein RS (1999) Rheol Acta 38:503

  17. Bruinsma R, Safinya CR (1991) Phys Rev A 43:5377

    Article  CAS  Google Scholar 

  18. Burghardt WR (1998) Macromol Chem Phys 199:471

    Article  CAS  Google Scholar 

  19. Burghardt WR, Fuller GG (1990) J Rheol 34:959

  20. Burghardt WR, Fuller GG (1991) Macromolecules 24:2546

    Article  CAS  Google Scholar 

  21. Carlsson T (1987) Mol Cryst Liq Cryst 104:307

    Article  Google Scholar 

  22. Carlsson T, Skarp K (1986) Liq Cryst 1:455

  23. Chandrasekhar S (1992) Liquid crystals, 2nd edn. Cambridge University Press

  24. Chaubal CV, Leal LG, Fredrickson GH (1995) J Rheol 39:73

    Article  CAS  Google Scholar 

  25. Chillingworth DRJ, Vicente Alonso E, Wheeler AA (2001) J Phys A Math Gen 34:1393

    Article  Google Scholar 

  26. Cladis PE, Torza S (1975) Phys Rev Lett 35:1283

    Article  CAS  Google Scholar 

  27. Clar MG, Saunders FC, Shanks IA, Leslie FM (1981) Mol Cryst Liq Cryst 70:195

    Article  Google Scholar 

  28. Cocchini F, Aratari C, Marrucci G (1990) Macromolecules 23:4446

    Article  CAS  Google Scholar 

  29. de Gennes P-G (1971) Mol Cryst Liq Cryst 12:193

    Article  Google Scholar 

  30. de Gennes P-G, Prost A (1993) The physics of liquid crystals, 2nd edn. Oxford University Press

  31. Doedel EJ et al. (1995) AUTO95: continuation and bifurcation software for ordinary differential equations. Concordia University

  32. Doedel EJ et al. (1997) AUTO97: continuation and bifurcation software for ordinary differential equations. Concordia University

  33. Doi M (1981) J Polym Sci Polym Phys Ed 19:229

    Article  CAS  Google Scholar 

  34. Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford University Press (Clarendon), London-New York

  35. Donald AM, Windle AH (1992) Liquid crystalline polymers. Cambridge Solid State Science Series, Cambridge University Press

  36. Dupré DB (1982) Techniques for the evaluation of material constants in lyotropic systems and the study of pretransitional phenomena in polymer liquid crystals. In: Ciferi A, Krigbaum W, Meyer RB (eds) Polymer liquid crystals. Academic Press, New York, chap 7

  37. Edie D, McHugh JJ (1996) Carbon 34(11):1315

  38. Edwards BJ, Pilitsis S, Beris AN (1988) Proceedings of the Xth International Congress on Rheology, vol 1, p 312

  39. Edwards BJ (1991) The dynamical continuum theory of liquid crystals. PhD thesis, Univ of Delaware

  40. Ericksen JL (1960) Arch Ration Mech Anal 4:231

    Article  Google Scholar 

  41. Ericksen JL (1962) Arch Ration Mech Anal 9:371

    Article  Google Scholar 

  42. Ermentrout B (2001) XPPAUT-the differential equation tool. University of Pittsburg

  43. Faraoni V, Maffetone PL (1999) J Rheol 43:829

  44. Farhoudi Y, Rey AD (1993) J Rheol 37:289

  45. Feng J, Chaubal CV, Leal LG (1998) J Rheol 42:1095

    Article  CAS  Google Scholar 

  46. Feng J, Sgalari G, Leal LG (2000) J Rheol 44:1085

    Article  CAS  Google Scholar 

  47. Feng J, Tao J, Leal LG (2001) Roll cells and disclinations in sheared nematic polymers. Preprint

  48. Forest MG, Wang Q, Zhou H (2000) Phys Fluids 12(3):490

    Article  CAS  Google Scholar 

  49. Forest MG, Wang Q, Zhou H (2000) Phys Rev E 61(6):6655

    Article  CAS  Google Scholar 

  50. Forest MG, Wang Q, Zhou H (2001) Liq Cryst 28(5):717

  51. Forest MG, Wang Q, Zhou H (2001) Physica D 152/153:288

  52. Forest MG, Wang Q (2002) Rheological predictions of Doi moment-closure models for finite-aspect-ratio nematic polymers (in preparation)

  53. Forest MG, Wang Q, Zhou R (2002) Symmetries of the Doi kinetic theory for nematic polymers of arbitrary aspect ratio: at rest and in linear flows. Submitted to Phys Rev E, February, 2002, and UNC-CH Program in Applied Mathematics Preprint PAMPS-2002–08 (2002)

  54. Forest MG, Wang Q, Zhou R (2002) The weak shear limit of the isotropic-nematic phase diagram for nematic polymers from Doi molecular theory. UNC-CH Program in Applied Mathematics Preprint PAMPS-2002–16

  55. Forest MG, Wang Q, Zhou R (2002) The monodomain phase diagram for sheared nematic polymers from Doi molecular theory. UNC-CH Program in Applied Mathematics Preprint PAMPS-2002–17

  56. Forest MG, Wang Q, Zhou H (2002) Flow-orientation structure evolution of tumbling and kayaking nematic polymers in the gap between shearing plates. UNC-CH Program in Applied Mathematics Preprint Series PAMPS-2002–04

  57. Forest MG, Wang Q, Zhou R (2002) Exact director torque dynamics of nematic polymers from Doi molecular theory and mesoscopic upscaling approximations. UNC-CH Program in Applied Mathematics Preprint Series PAMPS-2002–18

  58. Fuller GG (1995) Optical rheometry of complex fluids. Oxford University Press, Oxford

  59. Gahwiller C (1972) Phys Rev Lett 28:1554

    Article  CAS  Google Scholar 

  60. Golubitsky M, Chillingworth D (2001) University of Houston (preprint)

  61. Gotsis AD, Baird DG (1986) Rheol Acta 25:275

  62. Grizzuti N, Cavella S, Cicarelli P (1990) J Rheol 34:1293

    Article  Google Scholar 

  63. Grosso M, Keunings R, Crescitelli S, Maffettone PL (2001) Prediction of chaotic dynamics in sheared liquid crystalline polymers. Preprint (2001) and lecture, Society of Rheology Annual Meeting, Hilton Head, SC, February

  64. Han CD, Kim SS (1994) J Rheol 38:13

  65. Han WH, Rey AD (1994) Phys Rev E 50:1688

    Article  CAS  Google Scholar 

  66. Han WH, Rey AD (1994) J Rheol 38:1317

  67. Hand GL (1962) J Fluid Mech 13:33

    Article  Google Scholar 

  68. Hess S (1976) Z Naturforsch Teil 31A:1034

    Article  CAS  Google Scholar 

  69. Hinch EJ, Leal LG (1972) J Fluid Mech 52(4):683

    Article  Google Scholar 

  70. Hinch EJ, Leal LG (1973) J Fluid Mech 57(4):753

    Article  Google Scholar 

  71. Hinch EJ, Leal LG (1976) J Fluid Mech 76(1):187

    Article  Google Scholar 

  72. Hongladarom K, Burghardt W (1993) Macromolecules 26:785

    Article  CAS  Google Scholar 

  73. Hongladarom K, Burghardt W, Baek SG, Cementwala S, Magda JJ (1993) Macromolecules 26:772

    Article  CAS  Google Scholar 

  74. Jeffery GB (1922) Proc Roy Soc London Ser A 102:161

  75. Jenkins JT (1978) Ann Rev Fluid Mech 10:197

    Article  CAS  Google Scholar 

  76. Kaiser P, Wiese W, Hess S (1992) J Non-Equilib Thermodyn 17:153

    Article  CAS  Google Scholar 

  77. Kevrekides Y, Theodoropoulos K, Qian Y-H (2000) Proc Natl Acad Sci 97:9840

    Article  Google Scholar 

  78. Kiss G, Porter RS (1978) J Polym Sci Polym Symp 65:193

    Article  CAS  Google Scholar 

  79. Kiss G, Porter RS (1980) J Polym Sci Polym Phys Ed 18:361

    Article  CAS  Google Scholar 

  80. Kroger M, Sellers HS (1995) J Chem Phys 103:807

    Article  Google Scholar 

  81. Kupferman R, Kawaguchi M, Denn MM (2000) J Non-Newtonian Fluid Mech 91:255

    Article  CAS  Google Scholar 

  82. Kuzuu N, Doi M (1983) J Phys Soc Japan 52:3486

    Article  CAS  Google Scholar 

  83. Kuzuu N, Doi M (1984) J Phys Soc Japan 53:1031

    Article  CAS  Google Scholar 

  84. Larson RG, Mead DW (1989) J Rheol 33:1251

  85. Larson RG (1990) Macromolecules 23:3983

    Article  CAS  Google Scholar 

  86. Larson RG, Ottinger H (1991) Macromolecules 24:6270

    Article  CAS  Google Scholar 

  87. Larson RG, Mead DW (1992) Liq Cryst 12:751

  88. Larson RG, Mead DW (1993) Liq Cryst 15:151

  89. Larson RG (1998) Rheology of complex fluids. Oxford University Press

  90. Leslie FM (1968) Arch Ration Mech Anal 28:265

    Article  Google Scholar 

  91. Leslie FM (1979) In: Brown HG (ed) Advances in liquid crystals. Academic Press, p 4

  92. Maffetone PL (1992) J Non-Newtonian Fluid Mech 45:339

    Article  Google Scholar 

  93. Maffettone PL, Crescitelli S (1994) J Rheol 38:1559

  94. Maffettone PL, Marrucci G (1991) J Non-Newtonian Fluid Mech 38:273

    Article  CAS  Google Scholar 

  95. Maffettone PL, Marrucci G, Mortier M, Moldenaers P, Mewis J (1994) J Chem Phys 100:7736

    Article  CAS  Google Scholar 

  96. Maffettone PL, Crescitelli S (1995) J Non-Newtonian Fluid Mech 59:73

    Article  CAS  Google Scholar 

  97. Maffettone PL, Sonnet AM, Virga EG (2000) J Non-Newtonian Fluid Mech 90:283

    Article  CAS  Google Scholar 

  98. Magda JJ, Baek S-G, de Vries L, Larson RG (1991) Macromolecules 24:4460

    Article  CAS  Google Scholar 

  99. Manneville P (1981) Mol Cryst Liq Cryst 70:223

    Article  Google Scholar 

  100. Marrucci G, Maffetone PL (1989) Macromolecules 22:4076

    Article  CAS  Google Scholar 

  101. Marrucci G, Maffetone PL (1990) J Rheol 34:1217, 1231

    Article  Google Scholar 

  102. Marrucci G (1991) Macromolecules 24:4176

    Article  CAS  Google Scholar 

  103. Marrucci G, Greco F (1991) Mol Cryst Liq Cryst 206:17

    Article  Google Scholar 

  104. Marrucci G, Greco F (1992) J Non-Newtonian Fluid Mech 44:1

    Article  CAS  Google Scholar 

  105. Marrucci G, Greco F (1993) Adv Chem Phys 86:331

    CAS  Google Scholar 

  106. Mather PT, Pearson DS, Burghardt WR (1995) J Rheol 39:627

    Article  CAS  Google Scholar 

  107. Mather PT, Pearson DS, Larson RG (1996) Liq Cryst 20(5):527

    Article  CAS  Google Scholar 

  108. Mather PT, Pearson DS, Larson RG (1996) Liq Cryst 20(5):539

    Article  CAS  Google Scholar 

  109. Mather PT, Romo-Uribe A, Han CD, Kim SS (1997) Macromolecules 30:7977

    Article  CAS  Google Scholar 

  110. Meiboom S, Hewitt RC (1973) Phys Rev E 30:261

    CAS  Google Scholar 

  111. Mewis J, Moriter M, Vermant J, Moldenaers P (1997) Macromolecules 30:1323

    Article  CAS  Google Scholar 

  112. Moldenaers P, Mewis J (1986) J Rheol 30:567

    Article  CAS  Google Scholar 

  113. Moldenaers P (1987) PhD Thesis, Katholiecke Universiteit Leuven

  114. Moldenaers P, Fuller G, Mewis J (1989) Macromolecules 22:960

    Article  CAS  Google Scholar 

  115. Muller JA, Stein RS, Winter HH (1994) Rheol Acta 33:473

  116. Muller JA, Stein RS, Winter HH (1996) Rheol Acta 35:160

  117. Navard P (1986) J Polym Sci Polym Phys Ed 24:435

    Article  CAS  Google Scholar 

  118. Olmsted PD, Goldbart PM (1990) Phys Rev A 41:4578

    Article  CAS  Google Scholar 

  119. Olmsted PD, Goldbart PM (1992) Phys Rev A 46:4966

    Article  CAS  Google Scholar 

  120. Olmsted PD, Lu C (1997) Phys Rev E 56:55

    Article  Google Scholar 

  121. Pieranski P, Guyon E (1974) Phys Rev Lett 32:924

    Article  CAS  Google Scholar 

  122. Pradadarao M, Pearce EM, Han CD (1982) J Appl Polym Sci 27:1343

    Article  Google Scholar 

  123. Rey AD (1995) Macromol Theory Simul 4(5):857

    Article  CAS  Google Scholar 

  124. Rienacker G, Hess S (1999) Physica A 267:294

  125. See H, Doi M, Larson RG (1990) J Chem Phys 92(1):792

  126. Semenov AN (1983) Sov Phys JETP 85:321

    Google Scholar 

  127. Semenov AN (1986) Sov Phys JETP 66:712

    Google Scholar 

  128. Singh AP, Rey AD (1998) Rheol Acta 37:30, 374

    Article  CAS  Google Scholar 

  129. Skarp K, Carlsson T, Lagerwall T, Stebler B (1981) Mol Cryst Liq Cryst 66:199

    Article  Google Scholar 

  130. Srinivasarao M, Berry GC (1991) J Rheol 35:379

  131. Srinivasarao M, Garay RO, Winter HH, Stein RS (1992) Mol Cryst Liq Cryst 223:29

    Article  CAS  Google Scholar 

  132. Tseng HC, Silver DL, Finlayson BA (1972) Phys Fluids 15:1213

  133. Tsuji T, Rey AD (1997) J Non-Newtonian Fluid Mech 73:127

    Article  CAS  Google Scholar 

  134. Van Horn BL, Winter HH (2000) Rheol Acta 39:294

  135. Vicente Alonso E, Wheeler AA, Sluckin TJ (2002) Nonlinear dynamics of a nematic liquid crystal in the presence of a shear flow. Preprint. Univ of Southampton

  136. Volovik GE (1980) JETP Lett 31:273

  137. Wang L, Rey AD (1997) Liq Cryst 23(1):93

  138. Wang Q (1997) J Rheol 41(5):943

  139. Wang Q (1997) J Non-Newtonian Fluid Mech 72:141

    Article  CAS  Google Scholar 

  140. Wang Q (2002) J Chem Phys 116(20):9120

    Article  CAS  Google Scholar 

  141. Wissbrun K (1993) J Rheol 37:777

    Article  CAS  Google Scholar 

  142. Yan NX, Labes MM, Baek SG, Magda JJ (1994) Macromolecules 27:2784

    Article  CAS  Google Scholar 

  143. Yang IK, Shine AD (1992) J Rheol 36:1079

  144. Zhou W-J, Kornfield JA, Burghardt WR (2001) Macromolecules 34:3654

    Article  CAS  Google Scholar 

  145. Zhou W-J, Kornfield JA, Ugaz V, Burghardt WR, Link D, Clark NA (1999) Macromolecules 31:8474

    Google Scholar 

  146. Zuniga I, Leslie FM (1989) Liq Cryst 5:725

Download references

Acknowledgment and disclaimer.

Effort sponsored by the Air Force Office of Scientific Research, Air Force Materials Command, USAF, under grant numbers F49620-99-1-0003 and F49620-00-1-0008. The US Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force Office of Scientific Research or the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gregory Forest.

Appendix. Viscosity coefficients

Appendix. Viscosity coefficients

The results of Jeffery [74], Batchelor [9] as well as Hinch and Leal [69, 70] on ellipsoidal suspensions in a viscous solvent are utilized in the derivation of the viscous stress [140]:

$$\matrix{ {\eta _s = \eta + 3/2\nu kT\zeta _3 ,} \hfill \cr {\zeta _3 = {{\zeta ^{\left( 0 \right)} } \over {I_1 }},\;\;\zeta _1 = \zeta ^{\left( 0 \right)} \left( {{1 \over {I_3 }} - {1 \over {I_1 }}} \right),\;\;\zeta _2 = \zeta ^{\left( 0 \right)} \left[ {{{J_{\rm I} } \over {I_1 J_3 }} + {1 \over {I_1 }} - {2 \over {I_3 }}} \right],} \hfill \cr {I_1 = 2r\int_0^ \propto {{{dx} \over {\sqrt {\left( {r^2 + x} \right)\left( {1 + x} \right)^3 } }},\;\;I_3 = r\left( {r^2 + 1} \right)\int_0^\infty {{{dx} \over {\sqrt {\left( {r^2 + x} \right)\left( {1 + x} \right)^2 \left( {r^2 + x} \right)} }}} ,} } \hfill \cr {J_1 = r\int_0^\infty {{{xdx} \over {\sqrt {\left( {r^2 + x} \right)\left( {1 + x} \right)^3 } }},\;\;J_3 = r\int_0^\infty {{{xdx} \over {\sqrt {\left( {r^2 + x} \right)\left( {1 + x} \right)^2 \left( {r^2 + x} \right)} }}.} } } \hfill \cr } $$
(A1)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forest, M.G., Wang, Q. Monodomain response of finite-aspect-ratio macromolecules in shear and related linear flows. Rheol Acta 42, 20–46 (2003). https://doi.org/10.1007/s00397-002-0252-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-002-0252-0

Keywords.

Navigation