Skip to main content
Log in

Physicochemical characterization of a novel surfactant peptide containing an arginine cation and laurate anion

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A novel surfactant peptide consisting of an arginine cation with laurate anion has been synthesized, purified and characterized. The critical micellar concentration (cmc) of peptide in aqueous solutions has been determined using spectroscopic techniques and is found to increase from 0.06 to 0.11 mM with increasing temperature (15–45°C). Cmc is also determined in the presence of salts like NaCl, KCl and sodium acetate and it is found that these electrolytes hinder aggregation with a significant increase in the case of sodium acetate. The aggregation number of the surfactant peptide has been determined using fluorescence quenching measurements and is observed to decrease from 14 to 6 with increasing temperature (15–45°C). The standard free energy change (ΔG 0m ) and standard enthalpy change (ΔH 0m ) of the peptide aggregate are found to be negative with a small positive value for standard entropy change (ΔS 0m ). The peptide aggregate seems to undergo phase transition above 50°C as observed from UV-vis and fluorescence spectroscopy. From pyrene binding studies, it is shown that the interior dielectric constant increases from 5.08 at 34°C to 8.77 at 50°C and further decreases with increase in temperature indicating a phase change at 50°C. Also, the ratio of excimer intensity to monomer intensity, which is a measure of microviscosity of the aggregate, decreases with increase in temperature with a change at 50°C indicating a phase change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Attwood D, Florence AT (1983) In: Surfactant Systems — Their Chemistry, Pharmacy and Biology. Chapman and Hall, New York

    Google Scholar 

  2. Robertson RN (1983) In: The Lively Membranes. Cambridge University Press, London

    Google Scholar 

  3. Fendler JH (1984) Chem Br 20:1098–1103

    CAS  Google Scholar 

  4. Knight CG (1981) In: Lipsomes: From Physical Structures to Therapeutic Applications. Elsevier, Cambridge

    Google Scholar 

  5. Tadros Th F (1984) In: Tadros Th F (ed) Surfactants. Academic Press, London, pp 323–335

    Google Scholar 

  6. Mutter M, Vuilleumier S (1989) Angew Chem Int Ed Engl 28:535–554

    Article  Google Scholar 

  7. Hruby VJ, Al-Obeidi F, Kazmierski W (1990) Biochem J 268:249–262

    CAS  Google Scholar 

  8. Schwyzer R (1992) Brazilian J Med Biol Res 25:1077–1089

    CAS  Google Scholar 

  9. Brugge JS (1993) Science 260:918–919

    Article  CAS  Google Scholar 

  10. Wallace BM, Lasker JS (1993) Science 260:912–913

    Article  CAS  Google Scholar 

  11. Poznansky MJ, Juliano RL (1984) Pharmacol Rev 36:277–335

    CAS  Google Scholar 

  12. Eppstein DA, Longenecker JP (1988) CRC Critical Reviews in Therapeutic Drug Carrier Systems 5:99–139

    CAS  Google Scholar 

  13. Ramesh CV, Jayakumar R, Puvanakrishnan R (1995) Int J Peptide and Protein Res 45:386–390

    CAS  Google Scholar 

  14. Evans DF (1988) Langmuir 4:3–12;

    Article  CAS  Google Scholar 

  15. Israelachvili JN, Marcelja S, Horn RG (1980) Q Rev Biophys 13:121–200

    Article  CAS  Google Scholar 

  16. Fukuda H, Kawata K, Okuda H, Regen SL (1990) J Am Chem Soc 112:1635–1637

    Article  CAS  Google Scholar 

  17. Kaler EW, Murthy AK, Rodriguez BE, Zasadzinski JAN (1989) Science 245:1371–1374

    Article  CAS  Google Scholar 

  18. Luo H, Boens N, Van der Auweraer M, De Schryver FC, Malliaris A (1989) J Phys Chem 93:3244–3250

    Article  CAS  Google Scholar 

  19. Turro NJ, Yekta A (1978) J Am Chem Soc 100:5951–5952

    Article  CAS  Google Scholar 

  20. Hall DG, Pethica BA (1967) In: Vol 1. Schick MJ (ed) Nonionic Surfactants, Marcel Dekker, New York, pp 516–557

    Google Scholar 

  21. Kalyanasundaram KD, Thomas JK (1977) J Phys Chem 81:2176–2180

    Article  CAS  Google Scholar 

  22. Lanos PL, Lang J, Straziulle C, Zana R (1982) J Phys Chem 86:1019–1025

    Article  Google Scholar 

  23. Turro NJ, Kuo PL (1986) J Phys Chem 90:837–841

    Article  CAS  Google Scholar 

  24. Zana R (1987) In: Surfactant Solutions: New Methods of Investigation. Marcel Dekker, New York and Basel, pp 241–294

    Google Scholar 

  25. Pownall HJ, Smith LC (1973) J Am Chem Soc 95:3136–3140;

    Article  CAS  Google Scholar 

  26. Emert J, Behrens C, Goldenberg M (1979) J Am Chem Soc 101:771–772

    Article  CAS  Google Scholar 

  27. Bashford D, Case DA, Dalvit C, Tennant L, Wright PE (1993) Biochemistry 32:8045–8056

    Article  CAS  Google Scholar 

  28. Klotz IM (1973) Ann NY Acad Sci 226:18–35

    Article  CAS  Google Scholar 

  29. StCharles R, Watz DA, Ednonds BFP (1989) J Mol Biol 187:341–348

    Google Scholar 

  30. Mayo KH, Chen MJ (1989) Biochemistry 28:9469–9478

    Article  CAS  Google Scholar 

  31. Slavik J (1982) Biochim Biophys Acta 694:1–25

    CAS  Google Scholar 

  32. Moro ME, Rodriguez LJ (1991) Langmuir 7:2017–2020

    Article  CAS  Google Scholar 

  33. Ruckenstein E, Nagarajan R (1975) J Phys Chem 79:2622–2626

    Article  CAS  Google Scholar 

  34. Cramer F, Saenger W, Spatz H (1967) J Am Chem Soc 89:14–20

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramesh, C.V., Puvanakrishnan, R. & Jayakumar, R. Physicochemical characterization of a novel surfactant peptide containing an arginine cation and laurate anion. Colloid Polym Sci 275, 1162–1168 (1997). https://doi.org/10.1007/s003960050197

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s003960050197

Key words

Navigation