Skip to main content
Log in

A green and facile approach to prepare polylactide/kapok monoliths for a sustainable and reusable oil sorbent

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The three-dimensional polylactide (PLA)/kapok monolith with hierarchical porous structures was first prepared via the non-solvent-induced phase separation (NIPS) method. Kapok fibers were preferred to be used as oil adsorbing materials due to their extensive resource, low cost, and excellent oil sorption capacity. However, the fibrous assemblies of kapok formed by adhesives could not be degraded naturally. In this study, PLA and kapok fibers could be regarded as dispersed medium and dispersed phase, respectively. PLA and kapok fibers were physically combined without any binder. The resulting PLA/kapok monoliths exhibited the integrated properties of superior hydrophobicity with a water contact angle of 141°, rapid absorption rate, high oil absorption of 17.34 g/g and reutilization. The degradability of raw materials, excellent oil absorption performance, and simplicity of the preparation technology make the monolith have potential in oil/water separation and oil pollution treatment.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included in the article.

References

  1. Yeh SK, Tsai YB, Gebremedhin KF, Chien TY, Chang RY, Tung KL (2021) Preparation of polypropylene/high-melt-strength PP open-cell foam for oil absorption. Polym Eng Sci 61:1139–1149. https://doi.org/10.1002/pen.25654

    Article  CAS  Google Scholar 

  2. Zhang Y, Wang B, Wang B, Yang X, Ma S, Feng Y, Liu C, Shen C (2022) Super-hydrophobic graphene-coated thermoplastic polyurethane porous monolith with superior photothermal effect for solar-assisted efficient cleanup of crude oil spill. Appl Surf Sci 605:154701. https://doi.org/10.1016/j.apsusc.2022.154701

  3. Lei W, Portehault D, Liu D, Qin S, Chen Y (2013) Porous boron nitride nanosheets for effective water cleaning. Nat Commun 4:1777. https://doi.org/10.1038/ncomms2818

    Article  CAS  PubMed  Google Scholar 

  4. Li B, Wu L, Li L, Seeger S, Zhang J, Wang A (2014) Superwetting double-layer polyester materials for effective removal of both insoluble oils and soluble dyes in water. ACS Appl Mater Inter 6:11581–11588. https://doi.org/10.1021/am502313h

  5. Dong T, Wang F, Xu G (2015) Sorption kinetics and mechanism of various oils into kapok assembly. Mar Pollut Bull 91:230–237. https://doi.org/10.1016/j.marpolbul.2014.11.044

    Article  CAS  PubMed  Google Scholar 

  6. Xu Z, Miyazaki K, Hori T (2016) Fabrication of polydopamine-coated superhydrophobic fabrics for oil/water separation and self-cleaning. Appl Surf Sci 370:243–251. https://doi.org/10.1016/j.apsusc.2016.02.135

    Article  CAS  Google Scholar 

  7. Zhang P, Tian R, Lv R, Na B, Liu Q (2015) Water-permeable polylactide blend membranes for hydrophilicity-based separation. Chem Eng J 269:180–185. https://doi.org/10.1016/j.cej.2015.01.111

    Article  CAS  Google Scholar 

  8. Hu X, Xiao CF, Zhao J, Fen Y, Xu NK (2013) Preparation of plma/pu blend fiber and its absorption properties. Chem J Chinese U 34:1985–1992. https://doi.org/10.7503/cjcu20130222

    Article  CAS  Google Scholar 

  9. Dong T, Cao S, Xu G (2016) Highly porous oil sorbent based on hollow fibers as the interceptor for oil on static and running water. J Hazard Mater 305:1–7. https://doi.org/10.1016/j.jhazmat.2015.11.030

    Article  CAS  PubMed  Google Scholar 

  10. Si Y, Fu Q, Wang X, Zhu J, Yu J, Sun G, Ding B (2015) Superelastic and superhydrophobic nanofiber-assembled cellular aerogels for effective separation of oil/water emulsions. ACS Nano 9:3791–3799. https://doi.org/10.1021/nn506633b

    Article  CAS  PubMed  Google Scholar 

  11. Hu H, Zhao Z, Wan W, Gogotsi Y, Qiu J (2013) Ultralight and highly compressible graphene aerogels. Adv Mater 25:2219–2223. https://doi.org/10.1002/adma.201204530

    Article  CAS  PubMed  Google Scholar 

  12. Wang B, Yang X, Sha D, Shi K, Xu J, Ji X (2020) Silane functionalized polyvinyl-alcohol formaldehyde sponges on fast oil absorption. ACS Appl Polym Mater 2:5309–5317. https://doi.org/10.1021/acsapm.0c01052

    Article  CAS  Google Scholar 

  13. Lu Z, Song J, Pan K, Meng J, Xin Z, Liu Y, Zhao Z, Gong RH, Li J (2019) Ecoflex sponge with ultrahigh oil absorption capacity. ACS Appl Mater Inter 11:20037–20044. https://doi.org/10.1021/acsami.9b04446

    Article  CAS  Google Scholar 

  14. Wang G, Uyama H (2016) Facile synthesis of flexible macroporous polypropylene sponges for separation of oil and water. Sci Rep 6:21265. https://doi.org/10.1038/srep21265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Su C (2009) Highly hydrophobic and oleophilic foam for selective absorption. Appl Surf Sci 256:1413–1418. https://doi.org/10.1016/j.apsusc.2009.08.098

    Article  CAS  Google Scholar 

  16. Xu T, Miszuk JM, Zhao Y, Sun H, Fong H (2015) Electrospun polycaprolactone 3D nanofibrous scaffold with interconnected and hierarchically structured pores for bone tissue engineering. Adv Healthc Mater 4:2238–2246. https://doi.org/10.1002/adhm.201500345

    Article  CAS  PubMed  Google Scholar 

  17. Liu Y, Huang G, Gao C, Zhang L, Chen M, Xu X, Gao J, Pan C, Yang N, Liu Y (2015) Biodegradable polylactic acid porous monoliths as effective oil sorbents. Compos Sci Technol 118:9–15. https://doi.org/10.1016/j.compscitech.2015.08.005

    Article  CAS  Google Scholar 

  18. Wang G, Niu J, Asoh TA, Uyama H (2019) Fabrication of compressible polyolefin monoliths and their applications. J Taiwan Inst Chem E 105:166–170. https://doi.org/10.1016/j.jtice.2019.09.025

    Article  CAS  Google Scholar 

  19. Zhao J, Ren W, Cheng HM (2012) Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations. J Mater Chem 22:20197–20202. https://doi.org/10.1039/c2jm34128j

    Article  CAS  Google Scholar 

  20. Shen Y, Fang Q, Chen B (2015) Environmental applications of three-dimensional graphene-based macrostructures: adsorption, transformation, and detection. Environ Sci Technol 49:67–84. https://doi.org/10.1021/es504421y

    Article  CAS  PubMed  Google Scholar 

  21. Sun X, Fujimoto T, Uyama H (2013) Fabrication of a poly(vinyl alcohol) monolith via thermally impacted non-solvent-induced phase separation. Polym J 45:1101–1106. https://doi.org/10.1038/pj.2013.18

    Article  CAS  Google Scholar 

  22. Kang Y, Wang C, Qiao Y, Gu J, Zhang H, Peijs T, Kong J, Zhang G, Shi X (2019) Tissue-engineered trachea consisting of electrospun patterned scPLA/GO-g-IL fibrous membranes with antibacterial property and 3D-printed skeletons with elasticity. Biomacromol 20:1765–1776. https://doi.org/10.1021/acs.biomac.9b00160

    Article  CAS  Google Scholar 

  23. Sai H, Tan KW, Hur K et al (2013) Hierarchical porous polymer scaffolds from block copolymers. Science 341:530–534. https://doi.org/10.1126/science.1238159

    Article  CAS  PubMed  Google Scholar 

  24. Morariu MD, Voicu NE, Schaffer E, Lin ZQ, Russell TP, Steiner U (2003) Hierarchical structure formation and pattern replication induced by an electric field. Nat Mater 2:48–52. https://doi.org/10.1038/nmat789

    Article  CAS  PubMed  Google Scholar 

  25. Okada K, Nandi M, Maruyama J, Oka T, Tsujimoto T, Kondoh K, Uyama H (2011) Fabrication of mesoporous polymer monolith: a template-free approach. Chem Commun 47:7422–7424. https://doi.org/10.1039/c1cc12402a

    Article  CAS  Google Scholar 

  26. Onde OC, Yilgor E, Yilgor I (2016) Fabrication of rigid poly(lactic acid) foams via thermally induced phase separation. Polymer 107:240–248. https://doi.org/10.1016/j.polymer.2016.11.025

    Article  CAS  Google Scholar 

  27. Wang G, Xin Y, Uyama H (2015) Facile fabrication of mesoporous poly(ethylene-co-vinyl alcohol)/chitosan blend monoliths. Carbohyd Polym 132:345–350. https://doi.org/10.1016/j.carbpol.2015.06.040

    Article  CAS  Google Scholar 

  28. Chen M, Qiao J, Sun X, Chen W, Uyama H, Wang X (2019) A green and facile strategy for hierarchically porous poly(L-lactic acid)/poly(epsilon-caprolactone) monolithic composites. J Mater Res 34:2990–2999. https://doi.org/10.1557/jmr.2019.214

    Article  CAS  Google Scholar 

  29. Zheng Y, Wang J, Zhu Y et al (2015) Research and application of kapok fiber as an absorbing material: a mini review. J Environ Sci 27:21–32. https://doi.org/10.1016/j.jes.2014.09.026

    Article  CAS  Google Scholar 

  30. Rengasamy RS, Das D, Karan CP (2011) Study of oil sorption behavior of filled and structured fiber assemblies made from polypropylene, kapok and milkweed fibers. J Hazard Mater 186:526–532. https://doi.org/10.1016/j.jhazmat.2010.11.031

    Article  CAS  PubMed  Google Scholar 

  31. Rezabeigi E, Wood-Adams PM, Drew RAL (2014) Production of porous polylactic acid monoliths via nonsolvent induced phase separation. Polymer 55:6743–6753. https://doi.org/10.1016/j.polymer.2014.10.063

    Article  CAS  Google Scholar 

  32. Qin X, Wang B, Zhang X, Shi Y, Ye S, Feng Y, Liu C, Shen C (2019) Superelastic and durable hierarchical porous thermoplastic polyurethane monolith with excellent hydrophobicity for highly efficient oil/water separation. Ind Eng Chem Res 58:20291–20299. https://doi.org/10.1021/acs.iecr.9b03717

    Article  CAS  Google Scholar 

  33. Wang B, Chen W, Zhang L, Li Z, Liu C, Chen J, Shen C (2017) Hydrophobic polycarbonate monolith with mesoporous nest-like structure: an effective oil sorbent. Mater Lett 188:201–204. https://doi.org/10.1016/j.matlet.2016.11.015

    Article  CAS  Google Scholar 

  34. Ridgway CJ, PaC G, Schoelkopf J (2002) Effect of capillary element aspect ratio on the dynamic imbibition within porous networks. J Colloid Interf Sci 252:373–382. https://doi.org/10.1006/jcis.2002.8468

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China [No. 52203056], and the Graduate Student Innovation Fund of Donghua University [No. CUSF-DH-D-2020020].

Author information

Authors and Affiliations

Authors

Contributions

Mingjing Chen wrote the main manuscript text. Hiroshi Uyama, Xinhou Wang, and Xiaoxia Sun provided guiding suggestions for the experimental plan and the theories involved in the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Xiaoxia Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Uyama, H., Wang, X. et al. A green and facile approach to prepare polylactide/kapok monoliths for a sustainable and reusable oil sorbent. Colloid Polym Sci 301, 1261–1270 (2023). https://doi.org/10.1007/s00396-023-05147-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-023-05147-5

Keywords

Navigation