Skip to main content
Log in

Facile fabrication of polystyrene/lignin /OV-POSS nanocomposite monolith by thermally induced phase separation method for wastewater cleanup

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, we successfully fabricated biocomposite monoliths using a facile, cost-effective, and friendly method via the thermally induced phase separation method using Polystyrene, Lignin, and OV-POSS. The properties of the prepared composites were estimated using Fourier transform infrared measurement (FTIR), scanning electron microscopy (SEM), and thermogravimetric analyzer (TGA). Furthermore, wettability properties were studied using water and oil. FTIR analysis indicates Polyester, Lignin, and OV-POSS were physically blended. The investigation by SEM showed the successful merging of components. Moreover, it revealed that OV-POSS nanoparticles acted as a support for reduced surface roughness. TGA measurements revealed that thermal stability was much better with increased OV-POSS loading. OV-POSS modified monolith exhibited hydrophobic with water contact angles of more than 130°. Results indicate that the produced monolith has a good sorption behavior to oils and organic liquids, whereas PL10L-0.3P showed higher sorption capacities followed by PL10L-0.1P, PL10L, and PL, respectively. The performance of the monoliths on oil/water separation was investigated through the selective removal of oil or organic solvent from water. Hence, the monoliths showed high separation efficiency above 90% and good reusability. The analysis showed that the adsorption for the oil and solvent process followed the pseudo-second-order model with a linear regression coefficient (R2) of > 0.999. The equilibrium data fit well with the Langmuir model. Besides, thermodynamic parameter analysis results showed that the adsorption was spontaneous and endothermic. An economic study examining the obtained resulted in a rate of investment (ROI) of 38.12%, a breakeven point (BEP) of 44.70%; this research is expected to be useful for the monolith industry that has attractive potential in practical industrial water treatment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Li S et al (2012) Enhancing oil-sorption performance of polypropylene fiber by surface modification via UV-induced graft polymerization of butyl acrylate. Water Sci Technol 66(12):2647–2652. https://doi.org/10.2166/wst.2012.444

    Article  CAS  PubMed  Google Scholar 

  2. Yu L et al (2023) Synthesis and characterization of highly efficient oil–water separation, recyclable, magnetic particles CoFe2O4/SDB. Polym Bull 80(4):3571–3584. https://doi.org/10.1007/s00289-022-04279-y

    Article  CAS  Google Scholar 

  3. Dacrory S (2022) Development of mesoporous foam based on dicarboxylic cellulose and graphene oxide for potential oil/water separation. Polym Bull 79(11):9563–9574. https://doi.org/10.1007/s00289-021-03963-9

    Article  CAS  Google Scholar 

  4. Medeiros ADLM et al (2022) Oily wastewater treatment: methods, challenges, and trends. Processes 10(4):743. https://doi.org/10.3390/pr10040743

    Article  CAS  Google Scholar 

  5. Abidli A, Huang Y, Park CB (2020) In situ oils/organic solvents cleanup and recovery using advanced oil-water separation system. Chemosphere 260:127586. https://doi.org/10.1016/j.chemosphere.2020.127586

    Article  CAS  PubMed  Google Scholar 

  6. Darmokoesoemo H, Magdhalena PT, Kusuma H (2016) Telescope snail (Telescopium sp.) and Mangrove crab (Scylla sp.) as adsorbent for the removal of Pb 2+ from aqueous solutions. Rasayan J Chem 9(4):680–685

    CAS  Google Scholar 

  7. Islam MA et al (2018) Metal ion and contaminant sorption onto aluminium oxide-based materials: a review and future research. J Environ Chem Eng 6(6):6853–6869. https://doi.org/10.1016/j.jece.2018.10.045

    Article  CAS  Google Scholar 

  8. Neolaka YA et al (2023) Adsorption of methyl red from aqueous solution using Bali cow bones (Bos javanicus domesticus) hydrochar powder. Results Eng 17:100824. https://doi.org/10.1016/j.rineng.2022.100824

    Article  CAS  Google Scholar 

  9. Abiodun O-AO et al (2023) Remediation of heavy metals using biomass-based adsorbents: adsorption kinetics and isotherm models. Clean Technol 5(3):934–960. https://doi.org/10.3390/cleantechnol5030047

    Article  Google Scholar 

  10. Naat JN et al (2021) Adsorption of Cu (II) and Pb (II) using silica@ mercapto (hs@ m) hybrid adsorbent synthesized from silica of Takari sand: optimization of parameters and kinetics. Rasayan J Chem 14(1):550–560. https://doi.org/10.31788/RJC.2021.1415803

    Article  CAS  Google Scholar 

  11. Osman AI et al (2023) Methods to prepare biosorbents and magnetic sorbents for water treatment: a review. Environ Chem Lett. https://doi.org/10.1007/s10311-023-01603-4

    Article  PubMed  PubMed Central  Google Scholar 

  12. Doherty WO, Mousavioun P, Fellows CM (2011) Value-adding to cellulosic ethanol: lignin polymers. Ind Crops Prod 33(2):259–276. https://doi.org/10.1016/j.indcrop.2010.10.022

    Article  CAS  Google Scholar 

  13. Luong ND et al (2012) An eco-friendly and efficient route of lignin extraction from black liquor and a lignin-based copolyester synthesis. Polym Bull 68:879–890. https://doi.org/10.1007/s00289-011-0658-x

    Article  CAS  Google Scholar 

  14. Khera RA et al (2020) Kinetics and equilibrium studies of copper, zinc, and nickel ions adsorptive removal on to Archontophoenix alexandrae: conditions optimization by RSM. Desalin Water Treat 201:289–300. https://doi.org/10.5004/dwt.2020.25937

    Article  CAS  Google Scholar 

  15. Divyashri G et al (2023) Valorization of coffee bean processing waste for the sustainable extraction of biologically active pectin. Heliyon. https://doi.org/10.1016/j.heliyon.2023.e20212

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhang H et al (2021) Ultralight, hydrophobic, sustainable, cost-effective and floating kapok/microfibrillated cellulose aerogels as speedy and recyclable oil superabsorbents. J Hazard Mater 406:124758. https://doi.org/10.1016/j.jhazmat.2020.124758

    Article  CAS  PubMed  Google Scholar 

  17. Ganewatta MS, Lokupitiya HN, Tang C (2019) Lignin biopolymers in the age of controlled polymerization. Polymers 11(7):1176

    Article  PubMed  PubMed Central  Google Scholar 

  18. Alassod A et al (2020) Polypropylene/lignin blend monoliths used as sorbent in oil spill cleanup. Heliyon. https://doi.org/10.1016/j.heliyon.2020.e04591

    Article  PubMed  PubMed Central  Google Scholar 

  19. Laurichesse S, Avérous L (2014) Chemical modification of lignins: towards biobased polymers. Prog Polym Sci 39(7):1266–1290

    Article  CAS  Google Scholar 

  20. del Río JC et al (2020) Lignin monomers from beyond the canonical monolignol biosynthetic pathway: another brick in the wall. ACS Sustain Chem Eng 8(13):4997–5012. https://doi.org/10.1021/acssuschemeng.0c01109

    Article  CAS  Google Scholar 

  21. Yao H et al (2022) Review on applications of lignin in pavement engineering: a recent survey. Front Mater 8:803524. https://doi.org/10.3389/fmats.2021.803524

    Article  Google Scholar 

  22. Yang J, Ching YC, Chuah CH (2019) Applications of lignocellulosic fibers and lignin in bioplastics: a review. Polymers 11(5):751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Alkhateeb WJ (2021) Response surface optimization of cotton tufts opening degree using Box–Behnken designs. Int J Cloth Sci Technol 33(2):254–269

    Article  Google Scholar 

  24. Zhang Z et al (2019) Lignin-polystyrene composite foams through high internal phase emulsion polymerization. Polym Eng Sci 59(5):964–972. https://doi.org/10.1002/pen.25046

    Article  CAS  Google Scholar 

  25. Li D et al (2021) A new approach to produce polystyrene monoliths by gelation and capillary shrinkage. SCI CHINA-MATER 64(9):2272–2279

    Article  CAS  Google Scholar 

  26. Alassod A et al (2023) Polypropylene-chitosan sponges prepared via thermal induce phase separation used as sorbents for oil spills cleanup. Polym Bull 80(5):4949–4964

    Article  CAS  Google Scholar 

  27. Wang G et al (2017) Template-free synthesis of polystyrene monoliths for the removal of oil-in-water emulsion. Sci Rep 7(1):6534

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ibadat NF et al (2021) Preparation of polystyrene microsphere-templated porous monolith for wastewater filtration. Materials 14(23):7165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang B et al (2019) Synergistic and compatibilizing effect of octavinyl polyhedral oligomeric silsesquioxane nanoparticles in polypropylene/intumescent flame retardant composite system. Compos A Appl Sci Manuf 123:46–58. https://doi.org/10.1016/j.compositesa.2019.04.032

    Article  CAS  Google Scholar 

  30. Vasquez KA et al (2012) Wetting properties induced in nano-composite POSS-MA polymer films by atomic layer deposited oxides. J Vacuum Sci Technol A 30(1):01A105

    Article  Google Scholar 

  31. Valentini L et al (2012) POSS vapor grafting on graphene oxide film. Chem Phys Lett 537:84–87

    Article  CAS  Google Scholar 

  32. Chew S et al (2011) Elasticity, thermal stability and bioactivity of polyhedral oligomeric silsesquioxanes reinforced chitosan-based microfibres. J Mater Sci - Mater Med 22(6):1365–1374

    Article  CAS  PubMed  Google Scholar 

  33. Cao S et al (2016) Study on structure and wetting characteristic of cattail fibers as natural materials for oil sorption. Environ Technol 37(24):3193–3199. https://doi.org/10.1080/09593330.2016.1181111

    Article  CAS  PubMed  Google Scholar 

  34. Bakatula EN et al (2018) Determination of point of zero charge of natural organic materials. Environ Sci Pollut Res 25:7823–7833

    Article  CAS  Google Scholar 

  35. Cardenas-Peña AM, Ibanez JG, Vasquez-Medrano R (2012) Determination of the point of zero charge for electrocoagulation precipitates from an iron anode. Int J Electrochem Sci 7(7):6142–6153

    Article  Google Scholar 

  36. Neolaka YA, Supriyanto G, Kusuma HS (2018) Adsorption performance of Cr (VI)-imprinted poly (4-VP-co-MMA) supported on activated Indonesia (Ende-Flores) natural zeolite structure for Cr (VI) removal from aqueous solution. J Environ Chem Eng 6(2):3436–3443. https://doi.org/10.1016/j.jece.2018.04.053

    Article  CAS  Google Scholar 

  37. Aigbe UO et al (2021) Fly ash-based adsorbent for adsorption of heavy metals and dyes from aqueous solution: a review. J Market Res 14:2751–2774

    CAS  Google Scholar 

  38. Gao Y et al (2023) Carboxy-functionalized polyimide aerogel monoliths: synthesis, characterization and carbon dioxide adsorption. Polym Bull 80(4):4429–4442

    Article  CAS  Google Scholar 

  39. Neolaka YA et al (2020) A Cr (VI)-imprinted-poly (4-VP-co-EGDMA) sorbent prepared using precipitation polymerization and its application for selective adsorptive removal and solid phase extraction of Cr (VI) ions from electroplating industrial wastewater. React Funct Polym 147:104451. https://doi.org/10.1016/j.reactfunctpolym.2019.104451

    Article  CAS  Google Scholar 

  40. Neolaka YA et al (2021) Evaluation of magnetic material IIP@ GO-Fe3O4 based on Kesambi wood (Schleichera oleosa) as a potential adsorbent for the removal of Cr (VI) from aqueous solutions. React Funct Polym 166:105000. https://doi.org/10.1016/j.reactfunctpolym.2021.105000

    Article  CAS  Google Scholar 

  41. Herman V et al (2015) Core double–shell cobalt/graphene/polystyrene magnetic nanocomposites synthesized by in situ sonochemical polymerization. RSC Adv 5(63):51371–51381

    Article  CAS  Google Scholar 

  42. Zhang Z, Terrasson V, Guénin E (2021) Lignin nanoparticles and their nanocomposites. Nanomaterials 11(5):1336

    Article  PubMed  PubMed Central  Google Scholar 

  43. Liu M et al (2019) Facile fabrication of superhydrophobic surface from fluorinated poss acrylate copolymer via one-step breath figure method and its anti-corrosion property. Polymers 11(12):1953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Raghu A et al (2007) Synthesis, characterization, and acoustic properties of new soluble polyurethanes based on 2, 2′-[1, 4-phenylenebis (nitrilomethylylidene) diphenol and 2, 2′-[4, 4′-methylene-di-2-methylphenylene-1, 1′-bis (nitrilomethylylidene)] diphenol. J Appl Polym Sci 106(1):299–308. https://doi.org/10.1002/app.26547

    Article  CAS  Google Scholar 

  45. De Chirico A et al (2003) Flame retardants for polypropylene based on lignin. Polym Degrad Stab 79(1):139–145

    Article  Google Scholar 

  46. Berthier D et al (2018) POSS nanofiller-induced enhancement of the thermomechanical properties in a fluoroelastomer terpolymer. Materials 11(8):1358

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chen R et al (2014) Biobased ternary blends of lignin, poly (lactic acid), and poly (butylene adipate-co-terephthalate): The effect of lignin heterogeneity on blend morphology and compatibility. J Polym Environ 22:439–448

    Article  CAS  Google Scholar 

  48. Alassod A et al (2020) Fabrication of polypropylene/lignin blend sponges via thermally induced phase separation for the removal of oil from contaminated water. SN Appl Sci 2:1–10. https://doi.org/10.1007/s42452-020-03372-z

    Article  CAS  Google Scholar 

  49. Bolognesi A et al (2005) Self-organization of polystyrenes into ordered microstructured films and their replication by soft lithography. Langmuir 21(8):3480–3485

    Article  CAS  PubMed  Google Scholar 

  50. Alassod A et al (2022) Using polypropylene needle punch nonwoven sorbents as the interceptor for oil in static and dynamic water experiments. Environ Technol 43(25):3919–3934

    Article  CAS  Google Scholar 

  51. Islam SR et al (2022) Using various concentrations of SiO2 aerogel for oil wicking, spreading, and interception tests of 3D weft-knitted spacer fabrics. J Text Inst 114:1–11

    Google Scholar 

  52. Alassod A, Abedalwafa MA, Xu G (2021) Evaluation of polypropylene melt blown nonwoven as the interceptor for oil. Environ Technol 42(18):2784–2796

    Article  CAS  PubMed  Google Scholar 

  53. Alassod A et al (2021) Polypropylene/lignin/POSS nanocomposites: thermal and wettability properties, application in water remediation. Materials 14(14):3950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Alassod A, Xu G (2021) Comparative study of polypropylene nonwoven on structure and wetting characteristics. J Text Inst 112(7):1100–1107

    Article  CAS  Google Scholar 

  55. Islam SR et al (2022) 3D Weft-knitted spacer fabrics (WKSFs) coated with silica aerogels as oil intercepting sorbents for use in static and dynamic water tests. Ind Crops Prod 186:115169

    Article  CAS  Google Scholar 

  56. Neolaka YA et al (2021) Indonesian Kesambi wood (Schleichera oleosa) activated with pyrolysis and H2SO4 combination methods to produce mesoporous activated carbon for Pb (II) adsorption from aqueous solution. Environ Technol Innov 24:101997. https://doi.org/10.1016/j.eti.2021.101997

    Article  CAS  Google Scholar 

  57. Raghav S, Kumar D (2018) Adsorption equilibrium, kinetics, and thermodynamic studies of fluoride adsorbed by tetrametallic oxide adsorbent. J Chem Eng Data 63(5):1682–1697

    Article  CAS  Google Scholar 

  58. Omar BM et al (2023) Wheat husk-based sorbent as an economical solution for removal of oil spills from sea water. Sci Rep 13(1):2575. https://doi.org/10.1038/s41598-023-29035-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mahmood T et al (2011) Comparison of different methods for the point of zero charge determination of NiO. Ind Eng Chem Res 50(17):10017–10023. https://doi.org/10.1021/ie200271d

    Article  CAS  Google Scholar 

  60. Dong T, Wang F, Xu G (2015) Sorption kinetics and mechanism of various oils into kapok assembly. Mar Pollut Bull 91(1):230–237

    Article  CAS  PubMed  Google Scholar 

  61. Budiana IGMN et al (2021) Synthesis, characterization and application of cinnamoyl C-phenylcalix [4] resorcinarene (CCPCR) for removal of Cr (III) ion from the aquatic environment. J Mol Liq 324:114776

    Article  CAS  Google Scholar 

  62. Alassod A et al (2022) Functionalization of aminoalkylsilane-grafted cotton for antibacterial, thermal, and wettability properties. RSC Adv 12(32):20906–20918. https://doi.org/10.1039/D2RA03214G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jing P et al (2013) Ultra-low density porous polystyrene monolith: facile preparation and superior application. J Mater Chem A 1(35):10135–10141. https://doi.org/10.1039/C3TA11761H

    Article  CAS  Google Scholar 

  64. Vo TH et al (2021) Amphibious superamphiphilic polystyrene monolith with underwater superoleophilicity: capture of underwater oil. Appl Surf Sci 570:151142. https://doi.org/10.1016/j.apsusc.2021.151142

    Article  CAS  Google Scholar 

  65. Yang X et al (2015) Hierarchical porous polystyrene monoliths from polyHIPE. Macromol Rapid Commun 36(17):1553–1558. https://doi.org/10.1002/marc.201500235

    Article  CAS  PubMed  Google Scholar 

  66. Neolaka YA et al (2020) The adsorption of Cr (VI) from water samples using graphene oxide-magnetic (GO-Fe3O4) synthesized from natural cellulose-based graphite (kusambi wood or Schleichera oleosa): Study of kinetics, isotherms and thermodynamics. J Market Res 9(3):6544–6556. https://doi.org/10.1016/j.jmrt.2020.04.040

    Article  CAS  Google Scholar 

  67. Neolaka YA et al (2022) Efficiency of activated natural zeolite-based magnetic composite (ANZ-Fe3O4) as a novel adsorbent for removal of Cr (VI) from wastewater. J Market Res 18:2896–2909. https://doi.org/10.1016/j.jmrt.2022.03.153

    Article  CAS  Google Scholar 

  68. Senol-Arslan D (2022) Isotherms, kinetics and thermodynamics of pb (ii) adsorption by crosslinked chitosan/sepiolite composite. Polym Bull 79(6):3911–3928. https://doi.org/10.1007/s00289-021-03688-9

    Article  CAS  Google Scholar 

  69. Wang J, Zheng Y, Wang A (2014) Kinetic and thermodynamic studies on the removal of oil from water using superhydrophobic kapok fiber. Water Environ Res 86(4):360–365. https://doi.org/10.2175/106143013x13807328849693

    Article  CAS  PubMed  Google Scholar 

  70. Mahreni M et al (2022) Synthesis of metal organic framework (MOF) based Ca-alginate for adsorption of malachite green dye. Polym Bull 79(12):11301–11315. https://doi.org/10.1007/s00289-022-04086-5

    Article  CAS  Google Scholar 

  71. Ifa L et al (2022) Techno-economics of coconut coir bioadsorbent utilization on free fatty acid level reduction in crude palm oil. Heliyon. https://doi.org/10.1016/j.heliyon.2022.e09146

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kusuma HS, Izzah DN, Linggajati IWL (2023) Microwave-assisted drying of Ocimum sanctum leaves: analysis of moisture content, drying kinetic model, and techno-economics. Appl Food Res 3(2):100337. https://doi.org/10.1016/j.afres.2023.100337

    Article  CAS  Google Scholar 

  73. Soetaredjo FE et al (2021) Ecological-safe and low-cost activated-bleaching earth: preparation, characteristics, bleaching performance, and scale-up production. J Clean Prod 279:123793. https://doi.org/10.1016/j.jclepro.2020.123793

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abeer Alassod.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alassod, A., Alkhateeb, W., Alghoraibi, I. et al. Facile fabrication of polystyrene/lignin /OV-POSS nanocomposite monolith by thermally induced phase separation method for wastewater cleanup. Polym. Bull. 81, 10081–10118 (2024). https://doi.org/10.1007/s00289-024-05193-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-024-05193-1

Keywords

Navigation