Skip to main content
Log in

Interaction between silica particles with poly(ethylene oxide) studied using an optical tweezer: insignificant effect of poly(ethylene oxide) on long-range double layer interaction

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

It is known that the adsorption of nonionic polymers or surfactants reduces the magnitude of zeta potential of colloidal particles and provides the steric repulsion between particles. A question remains as to whether nonionic polymers affect the structure of the electric double layer (EDL). To elucidate the effect of nonionic polymer on EDL, we investigated the long-range interaction forces between silica particles in aqueous solutions with different molecular weights of polyethylene oxide (PEO) having higher affinity to silica by using optical tweezers. For all measurements, long-ranged repulsive interactions were observed. The onset of the interaction force for bare particles and those with low molecular weight PEO remained identical and was consistent with the Derjaguin-Landau-Verwey-Overbeek (DLVO) predictions. This result indicates that the adsorption of nonionic PEO does not affect the charging properties of silica, and the interaction originates from the overlapping of the EDL. With high molecular weight PEO, the onset of interactions shifted to a few hundred nanometers larger than those for bare particles and was quantified using the Alexander-de Gennes model, suggesting the steric interactions originate from the protruding tails and/or loops of the adsorbed PEO layer. Based on the force measurements, we emphasize that the adsorption of nonionic polymer onto the surface of the silica particles does not affect the EDL surrounding the particles. Hence, we corroborate the notion that the reduction of the magnitude of zeta potential in the presence of nonionic polymer is attributable to the shift of the shear plane from the hydrodynamic viewpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hiemenz PC, Rajagopalan R (1997) Principles of colloid and surface chemistry, 3rd ed. Marcel Dekker, Inc

  2. Sone I, Hosoi M, Geonzon LC et al (2022) Gelation and network structure of acidified milk gel investigated at different length scales with and without addition of iota-carrageenan. Food Hydrocoll 123:107170. https://doi.org/10.1016/j.foodhyd.2021.107170

    Article  CAS  Google Scholar 

  3. Kim U, Carty WM (2016) Effect of polymer molecular weight on adsorption and suspension rheology. J Ceram Soc Japan 124:484–488. https://doi.org/10.2109/jcersj2.15219

    Article  CAS  Google Scholar 

  4. Sis H, Birinci M (2009) Effect of nonionic and ionic surfactants on zeta potential and dispersion properties of carbon black powders. Colloids Surfaces A Physicochem Eng Asp 341:60–67. https://doi.org/10.1016/j.colsurfa.2009.03.039

    Article  CAS  Google Scholar 

  5. Doan THY, Lim VH, Adachi Y, Pham TD (2021) Adsorption of binary mixture of highly positively charged PTMA5M and partially negatively charged PAA onto PSL particles studied by means of Brownian motion particle tracking and electrophoresis. Langmuir 37:12204–12212. https://doi.org/10.1021/acs.langmuir.1c02160

    Article  CAS  PubMed  Google Scholar 

  6. Szilagyi I, Trefalt G, Tiraferri A et al (2014) Polyelectrolyte adsorption, interparticle forces, and colloidal aggregation. Soft Matter 10:2479–2502. https://doi.org/10.1039/c3sm52132j

    Article  CAS  PubMed  Google Scholar 

  7. Zaman AA (2000) Effect of polyethylene oxide on the viscosity of dispersions of charged silica particles: interplay between rheology, adsorption, and surface charge. Colloid Polym Sci 278:1187–1197. https://doi.org/10.1007/s003960000385

    Article  CAS  Google Scholar 

  8. Fleer GJ, Stuart MAC, Scheutjens JMHM et al (1998) Polymers at interfaces, 1st edn. Springer, Dordrecht

    Book  Google Scholar 

  9. Ruiz-Cabello FJM, Maroni P, Borkovec M (2013) Direct measurements of forces between different charged colloidal particles and their prediction by the theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO). J Chem Phys 138. https://doi.org/10.1063/1.4810901

  10. Kobayashi M, Nitanai M, Satta N, Adachi Y (2013) Coagulation and charging of latex particles in the presence of imogolite. Colloids Surfaces A Physicochem Eng Asp 435:139–146. https://doi.org/10.1016/j.colsurfa.2012.12.057

    Article  CAS  Google Scholar 

  11. Kobayashi M, Yuki S, Adachi Y (2016) Effect of anionic surfactants on the stability ratio and electrophoretic mobility of colloidal hematite particles. Colloids Surfaces A Physicochem Eng Asp 510:190–197. https://doi.org/10.1016/j.colsurfa.2016.07.063

    Article  CAS  Google Scholar 

  12. Lin W, Galletto P, Borkovec M (2004) Charging and aggregation of latex particles by oppositely charged dendrimers. Langmuir 20:7465–7473. https://doi.org/10.1021/la049006i

    Article  CAS  PubMed  Google Scholar 

  13. Valmacco V, Trefalt G, Maroni P, Borkovec M (2015) Direct force measurements between silica particles in aqueous solutions of ionic liquids containing 1-butyl-3-methylimidazolium (BMIM). Phys Chem Chem Phys 17:16553–16559. https://doi.org/10.1039/c5cp02292d

    Article  CAS  PubMed  Google Scholar 

  14. Popa I, Gillies G, Papastavrou G, Borkovec M (2010) Attractive and repulsive electrostatic forces between positively charged latex particles in the presence of anionic linear polyelectrolytes. J Phys Chem B 114:3170–3177. https://doi.org/10.1021/jp911482a

    Article  CAS  PubMed  Google Scholar 

  15. Adachi Y (1995) Dynamic aspects of coagulation and flocculation. Adv Colloid Interface Sci 56:1–31. https://doi.org/10.1016/0001-8686(94)00229-6

    Article  CAS  Google Scholar 

  16. Adachi Y, Kusaka Y, Kobayashi A (2011) Transient behavior of adsorbing/adsorbed polyelectrolytes on the surface of colloidal particles studied by means of trajectory analysis of Brownian motion. Colloids Surfaces A Physicochem Eng Asp 376:9–13. https://doi.org/10.1016/j.colsurfa.2010.11.004

    Article  CAS  Google Scholar 

  17. Kawasaki S, Kobayashi M (2018) Affirmation of the effect of pH on shake-gel and shear thickening of a mixed suspension of polyethylene oxide and silica nanoparticles. Colloids Surfaces A Physicochem Eng Asp 537:236–242. https://doi.org/10.1016/j.colsurfa.2017.10.033

    Article  CAS  Google Scholar 

  18. Kobayashi M (2020) An analysis on electrophoretic mobility of hydrophobic polystyrene particles with low surface charge density: effect of hydrodynamic slip. Colloid Polym Sci 298:1313–1318. https://doi.org/10.1007/s00396-020-04716-2

    Article  CAS  Google Scholar 

  19. Sugimoto T, Cao T, Szilagyi I et al (2018) Aggregation and charging of sulfate and amidine latex particles in the presence of oxyanions. J Colloid Interface Sci 524:456–464. https://doi.org/10.1016/j.jcis.2018.04.035

    Article  CAS  PubMed  Google Scholar 

  20. Ohshima H, Sato H, Matsubara H et al (2004) A theory of adsorption kinetics with time delay and its application to overshoot and oscillation in the surface tension of gelatin solution. Colloid Polym Sci 282:1174–1178. https://doi.org/10.1007/s00396-004-1055-x

    Article  CAS  Google Scholar 

  21. Ohshima H (2006) Theory of colloid and interfacial electric phenomena. Academic Press, First Edit

    Google Scholar 

  22. Hill RJ, Saville DA (2005) “Exact” solutions of the full electrokinetic model for soft spherical colloids: electrophoretic mobility. Colloids Surfaces A Physicochem Eng Asp 267:31–49. https://doi.org/10.1016/j.colsurfa.2005.06.035

    Article  CAS  Google Scholar 

  23. Romero-Cano MS, Martín-Rodríguez A, de las Nieves FJ, (2002) Electrokinetic behaviour of polymer colloids with adsorbed Triton X-100. Colloid Polym Sci 280:526–532. https://doi.org/10.1007/s00396-001-0643-2

    Article  CAS  Google Scholar 

  24. Zimmermann R, Romeis D, Bihannic I et al (2014) Electrokinetics as an alternative to neutron reflectivity for evaluation of segment density distribution in PEO brushes. Soft Matter 10:7804–7809. https://doi.org/10.1039/c4sm01315h

    Article  CAS  PubMed  Google Scholar 

  25. Zimmermann R, Dukhin SS, Werner C, Duval JFL (2013) On the use of electrokinetics for unraveling charging and structure of soft planar polymer films. Curr Opin Colloid Interface Sci 18:83–92. https://doi.org/10.1016/j.cocis.2013.02.001

    Article  CAS  Google Scholar 

  26. Langlet J, Gaboriaud F, Gantzer C, Duval JFL (2008) Impact of chemical and structural anisotropy on the electrophoretic mobility of spherical soft multilayer particles: The case of bacteriophage MS2. Biophys J 94:3293–3312. https://doi.org/10.1529/biophysj.107.115477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Trefalt G, Palberg T, Borkovec M (2017) Forces between colloidal particles in aqueous solutions containing monovalent and multivalent ions. Curr Opin Colloid Interface Sci 27:9–17. https://doi.org/10.1016/j.cocis.2016.09.008

    Article  CAS  Google Scholar 

  28. Moazzami-Gudarzi M, Adam P, Smith AM et al (2018) Interactions between similar and dissimilar charged interfaces in the presence of multivalent anions. Phys Chem Chem Phys 20:9436–9448. https://doi.org/10.1039/c8cp00679b

    Article  CAS  PubMed  Google Scholar 

  29. Kobayashi M, Juillerat F, Galletto P et al (2005) Aggregation and charging of colloidal silica particles: effect of particle size. Langmuir 21:5761–5769. https://doi.org/10.1021/la046829z

    Article  CAS  PubMed  Google Scholar 

  30. Furusawa K, Chen Q, Tobori N (1990) A new reference sample for microelectrophoresis. J Colloid Interface Sci 137:456–461. https://doi.org/10.1016/0021-9797(90)90420-S

    Article  CAS  Google Scholar 

  31. Mathai KG, Ottewill RH (1966) Stability of hydrophobic sols in the presence of non-ionic surface-active agents. Part 1. —Electrokinetic and adsorption measurements on silver iodide sols and suspensions. Trans Faraday Soc 62:750–758

    Article  CAS  Google Scholar 

  32. Espasa-Valdepeñas A, Vega JF, Cruz V et al (2021) Revisiting polymer-particle interaction in PEO solutions. Langmuir 37:3808–3816. https://doi.org/10.1021/acs.langmuir.0c02715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Garvey MJ, Tadros TF, Vincent B (1976) A comparison of the adsorbed layer thickness obtained by several techniques of various molecular weight fractions of poly(vinyl alcohol) on aqueous polystyrene latex particles. J Colloid Interface Sci 55:440–453. https://doi.org/10.1016/0021-9797(76)90054-0

    Article  CAS  Google Scholar 

  34. Van Heiningen JA, Hill RJ (2011) Poly(ethylene oxide) adsorption onto and desorption from silica microspheres: new insights from optical tweezers electrophoresis. Macromolecules 44:8245–8260. https://doi.org/10.1021/ma2003486

    Article  CAS  Google Scholar 

  35. Stuart MAC, Waajen FHWH, Dukhin SS (1984) Electrokinetic effects of adsorbed neutral polymers. Colloid Polym Sci 262:423–426. https://doi.org/10.1007/BF01410263

    Article  CAS  Google Scholar 

  36. Tadros T (2011) Interaction forces between adsorbed polymer layers. Adv Colloid Interface Sci 165:102–107. https://doi.org/10.1016/j.cis.2011.02.002

    Article  CAS  PubMed  Google Scholar 

  37. van der Beek GP, Stuart MAC (1988) The hydrodynamic thickness of adsorbed polymer layers measured by dynamic light scattering : effects of polymer concentration and segmental binding strength. J Phys Fr 49:1449–1454. https://doi.org/10.1051/jphys:019880049080144900

    Article  Google Scholar 

  38. Flood C, Cosgrove T, Howell I, Revell P (2006) Effects of electrolytes on adsorbed polymer layers: poly(ethylene oxide)-silica system. Langmuir 22:6923–6930. https://doi.org/10.1021/la060724+

    Article  CAS  PubMed  Google Scholar 

  39. Wei X, Gong X, Ngai T (2013) Interactions between solid surfaces mediated by polyethylene oxide polymers: effect of polymer concentration. Langmuir 29:11038–11045. https://doi.org/10.1021/la401671m

    Article  CAS  PubMed  Google Scholar 

  40. Al-Hashmi AR, Luckham PF (2012) Using atomic force microscopy to probe the adsorption kinetics of poly(ethylene oxide) on glass surfaces from aqueous solutions. Colloids Surfaces A Physicochem Eng Asp 393:66–72. https://doi.org/10.1016/j.colsurfa.2011.10.025

    Article  CAS  Google Scholar 

  41. Giesbers M, Kleijn JM, Fleer GJ, Cohen Stuart MA (1998) Forces between polymer-covered surfaces: a colloidal probe study. Colloids Surfaces A Physicochem Eng Asp 142:343–353. https://doi.org/10.1016/S0927-7757(98)00366-5

    Article  CAS  Google Scholar 

  42. Owen RJ, Crocker JC, Verma R, Yodh AG (2001) Measurement of long-range steric repulsions between microspheres due to an adsorbed polymer. Phys Rev E - Stat Physics, Plasmas, Fluids, Relat Interdiscip Top 64:6. https://doi.org/10.1103/PhysRevE.64.011401

    Article  CAS  Google Scholar 

  43. Gong X, Wang Z, Ngai T (2014) Direct measurements of particle–surface interactions in aqueous solutions with total internal reflection microscopy. Chem Commun 50:6556–6570. https://doi.org/10.1039/c4cc00624k

    Article  CAS  Google Scholar 

  44. Zȩibacz N, Wieczorek SA, Kalwarczyk T et al (2011) Crossover regime for the diffusion of nanoparticles in polyethylene glycol solutions: influence of the depletion layer. Soft Matter 7:7181–7186. https://doi.org/10.1039/c0sm01357a

    Article  CAS  Google Scholar 

  45. Kalwarczyk T, Ziȩbacz N, Bielejewska A et al (2011) Comparative analysis of viscosity of complex liquids and cytoplasm of mammalian cells at the nanoscale. Nano Lett 11:2157–2163. https://doi.org/10.1021/nl2008218

    Article  CAS  PubMed  Google Scholar 

  46. Geonzon LC, Kobayashi M, Adachi Y (2021) Effect of shear flow on the hydrodynamic drag force of a spherical particle near a wall evaluated using optical tweezers and microfluidics. Soft Matter 17:7914–7920. https://doi.org/10.1039/d1sm00876e

    Article  CAS  PubMed  Google Scholar 

  47. Geonzon LC, Kobayashi M, Sugimoto T, Adachi Y (2022) Study on the kinetics of adsorption of poly(ethylene oxide) onto a silica particle using optical tweezers and microfluidics. Colloids Surfaces A Physicochem Eng Asp 642:128691. https://doi.org/10.1016/j.colsurfa.2022.128691

    Article  CAS  Google Scholar 

  48. Pires LB, Ether DS, Spreng B et al (2021) Probing the screening of the Casimir interaction with optical tweezers. Phys Rev Res 3:1–18. https://doi.org/10.1103/PhysRevResearch.3.033037

    Article  Google Scholar 

  49. Ether DS, Pires LB, Umrath S et al (2015) Probing the Casimir force with optical tweezers. Epl 112. https://doi.org/10.1209/0295-5075/112/44001

  50. Kawaguchi M, Mikura M, Takahashi A (1984) Hydrodynamic studies on adsorption of polyethylene oxide) in porous media. 2.† Molecular weight dependence of hydrodynamic thickness. Macromolecules 17:2063–2065. https://doi.org/10.1021/ma00140a032

    Article  CAS  Google Scholar 

  51. van der Beek GP, Cohen Stuart MA, Cosgrove T (1991) Polymer adsorption and desorption studies via 1H NMR relaxation of the solvent. Langmuir 7:327–334. https://doi.org/10.1021/la00050a022

    Article  Google Scholar 

  52. Valmacco V, Elzbieciak-Wodka M, Besnard C et al (2016) Dispersion forces acting between silica particles across water: influence of nanoscale roughness. Nanoscale Horizons 1:325–330

    Article  CAS  Google Scholar 

  53. Van Heiningen JA, Hill RJ (2011) Polymer adsorption onto a micro-sphere from optical tweezers electrophoresis. Lab Chip 11:152–162. https://doi.org/10.1039/c005217p

    Article  CAS  PubMed  Google Scholar 

  54. Wind B, Killmann E (1998) Adsorption of polyethylene oxide on surface modified silica - Stability of bare and covered particles in suspension. Colloid Polym Sci 276:903–912. https://doi.org/10.1007/s003960050327

    Article  CAS  Google Scholar 

  55. Killmann E, Maier H, Baker JA (1988) Hydrodynamic layer thicknesses of various adsorbed polymers on precipitated silica and polystyrene latex. Colloids Surf 31:51–71. https://doi.org/10.1016/0166-6622(88)80182-3

    Article  CAS  Google Scholar 

  56. Dijt JC, Stuart MAC, Fleer GJ (1994) Kinetics of adsorption and desorption of polystyrene on silica from decalin. Macromolecules 27:3207–3218. https://doi.org/10.1021/ma00090a014

    Article  CAS  Google Scholar 

  57. Fleer GJ, Van Male J, Johner A (1999) Analytical approximation to the Scheutjens−Fleer theory for polymer adsorption from dilute solution. 2. Adsorbed amounts and structure of the adsorbed layer. Macromolecules 32:845–862. https://doi.org/10.1021/ma980794q

  58. Adachi Y, Wada T (2000) Initial stage dynamics of bridging flocculation of polystyrene latex spheres with polyethylene oxide. J Colloid Interface Sci 229:148–154. https://doi.org/10.1006/jcis.2000.6964

    Article  CAS  PubMed  Google Scholar 

  59. Adachi Y, Stuart MAC, Fokkink R (1994) Dynamic aspects of bridging flocculation studied using standardized mixing. J Colloid Interface Sci 167:346–351

    Article  CAS  Google Scholar 

  60. de Gennes PG (1987) Polymers at an interface; a simplified view. Adv Colloid Interface Sci 27:189–209. https://doi.org/10.1016/0001-8686(87)85003-0

    Article  Google Scholar 

  61. de Gennes PG (1980) Conformations of polymers attached to an interface. Macromolecules 13:1069–1075. https://doi.org/10.1021/ma60077a009

    Article  Google Scholar 

  62. Block S, Helm CA (2008) Conformation of poly(styrene sulfonate) layers physisorbed from high salt solution studied by force measurements on two different length scales. J Phys Chem B 112:9318–9327. https://doi.org/10.1021/jp8020672

    Article  CAS  PubMed  Google Scholar 

  63. Block S, Helm CA (2011) Equilibrium and nonequilibrium features in the morphology and structure of physisorbed polyelectrolyte layers. J Phys Chem B 115:7301–7313. https://doi.org/10.1021/jp112140t

    Article  CAS  PubMed  Google Scholar 

  64. Braithwaite GJC, Luckham PF (1997) Effect of molecular weight on the interactions between poly(ethylene oxide) layers adsorbed to glass surfaces. J Chem Soc - Faraday Trans 93:1409–1415. https://doi.org/10.1039/a606976b

    Article  CAS  Google Scholar 

  65. Klein J, Luckham PF (1984) Long-range attractive forces between two mica surfaces in an aqueous polymer solution. Nature 308:836–837. https://doi.org/10.1038/308836a0

    Article  CAS  Google Scholar 

  66. Luckham PF, Klein J (1990) Forces between mica surfaces bearing adsorbed homopolymers in good solvents. The effect of bridging and dangling tails. J Chem Soc Faraday Trans 86:1363–1368. https://doi.org/10.1039/FT9908601363

    Article  CAS  Google Scholar 

  67. Israelachvili JN (2011) Intermolecular and surfaces forces. Academic Press, Third Edit

    Google Scholar 

  68. Cordeiro RM, Zschunke F, Müller-Plathe F (2010) Mesoscale molecular dynamics simulations of the force between surfaces with grafted poly(ethylene oxide) chains derived from atomistic simulations. Macromolecules 43:1583–1591. https://doi.org/10.1021/ma902060k

    Article  CAS  Google Scholar 

  69. Mohamad HS, Neuber S, Helm CA (2019) Surface forces of asymmetrically grown polyelectrolyte multilayers: searching for the charges. Langmuir 35:15491–15499. https://doi.org/10.1021/acs.langmuir.9b01787

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors are grateful for the financial support of JSPS KAKENHI Grant Numbers 20F20388, 21K14939, 22H00387, and 19H03070.

Author information

Authors and Affiliations

Authors

Contributions

Lester C. Geonzon: conceptualization, investigation, methodology, software, data curation, formal analysis, validation, visualization, writing—original draft, and writing—review and editing. Motoyoshi Kobayashi: supervision, conceptualization, methodology, formal analysis, visualization, writing—original draft, writing—review and editing, resources, funding acquisition, and project administration. Takuya Sugimoto: formal analysis and writing—review and editing. Yasuhisa Adachi: supervision, formal analysis, writing—review and editing, resources, funding acquisition, and project administration.

Corresponding author

Correspondence to Motoyoshi Kobayashi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geonzon, L.C., Kobayashi, M., Sugimoto, T. et al. Interaction between silica particles with poly(ethylene oxide) studied using an optical tweezer: insignificant effect of poly(ethylene oxide) on long-range double layer interaction. Colloid Polym Sci 300, 1179–1186 (2022). https://doi.org/10.1007/s00396-022-05020-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-022-05020-x

Keywords

Navigation