Skip to main content
Log in

Green synthesis of 1D and 0D Ag nanostructures using oligomeric polyelectrolytes as reducing and stabilizing agents

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

This work reports green synthesis of 1D and 0D Ag nanostructures using water as solvent and novel oligomeric polyelectrolytes-denominated oligoAMPS, oligo(AMPS-co-2VP), and oligo(AMPS-co-4VP) without external reducing agent. The oligomeric polyelectrolytes were obtained from 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS), 2-vinylpyridine (2VP), and 4-vinylpyridine (4VP), and they were characterized by 1H NMR, FTIR, and TGA. Colloidal synthesis of 0D and 1D silver nanostructures was performed in water using oligoAMPS, oligo(AMPS-co-2VP), or oligo(AMPS-co-4VP) as reducing and stabilizing agents. Results indicated that oligomeric polyelectrolytes in aqueous solution act as reducing agents for Ag+ ions and at the same time acting as stabilizers, forming colloidal solutions that remain stable during several months. 1D nanostructures are nanowires, and they were obtained using oligoAMPS while quasi-spherical nanoparticles (0D) were obtained using oligo(AMPS-co-2VP) and oligo(AMPS-co-4VP). Preliminary assays show Ag nanostructures stabilized with oligoAMPS, oligo(AMPS-co-2VP), and oligo(AMPS-co-4VP) have an antimicrobial effect against S. aureus and C. albicans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Caldera Villalobos M, Martins Alho M, García Serrano J, Álvarez Romero GA, Herrera González AM (2019) Colloidal synthesis of Au nanoparticles using polyelectrolytes with 1,3,4-thiadiazole as reducing agents. J Appl Polym Sci 136:47790. https://doi.org/10.1002/app.47790

    Article  CAS  Google Scholar 

  2. Yu D, Yam VWW (2004) Controlled synthesis of monodisperse silver nanocubes in water. J Am Chem Soc 126:13200–13201. https://doi.org/10.1021/ja046037r

    Article  PubMed  CAS  Google Scholar 

  3. Gu X, Nie C, Lai Y, Lin C (2006) Synthesis of silver nanorods and nanowires by tartrate-reduced route in aqueous solutions. Mater Chem Phys 96:217–222. https://doi.org/10.1016/j.matchemphys.2005.07.006

    Article  CAS  Google Scholar 

  4. Hu JQ, Chen Q, Xie ZX, Han GB, Wang RH, Ren B, Zhang Y, Yang ZL, Tian ZQ (2004) A Simple and effective route for the synthesis of crystalline silver nanorods and nanowires. Adv Funct Mater 14:183–189. https://doi.org/10.1002/adfm.200304421

    Article  CAS  Google Scholar 

  5. Chen S, Carroll DL (2008) Synthesis and characterization of truncated triangular silver nanoplates. Nano Lett 2:1003–1007. https://doi.org/10.1021/nl025674h

    Article  CAS  Google Scholar 

  6. Filippo E, Serra A, Buccolieri A, Manno D (2010) Green synthesis of silver nanoparticles with sucrose and maltose: morphological and structural characterization. J Non Cryst Solids 356:344–350. https://doi.org/10.1016/j.jnoncrysol.2009.11.021

    Article  CAS  Google Scholar 

  7. Albeladi AB, Al-Thabaiti SA, Khan Z (2020) Effect of CTAB on the surface resonance plasmon intensity of silver nanoparticles: stability and oxidative dissolution. J Mol Liq 302

  8. Kora AJ, Manjusha R, Arunachalam J (2009) Superior bactericidal activity of SDS capped silver nanoparticles: synthesis and characterization. Mater Sci Eng C 29:2104–2109. https://doi.org/10.1016/j.msec.2009.04.010

    Article  CAS  Google Scholar 

  9. Le AT, Tam LT, Tam PD, Huy PT, Huy TQ, Hieu NV, Kudrinskiy AA, Krutyakov YA (2010) Synthesis of oleic acid-stabilized silver nanoparticles and analysis of their antibacterial activity. Mater Sci Eng C 30:910–916. https://doi.org/10.1016/j.msec.2010.04.009

    Article  CAS  Google Scholar 

  10. Henglein A, Giersig M (1999) Formation of colloidal silver nanoparticles: capping action of citrate. J Phys Chem B 103:9533–9539. https://doi.org/10.1021/jp9925334

    Article  CAS  Google Scholar 

  11. Tripathy SK, Yu YT (2009) Spectroscopic investigation of S-Ag interaction in ω-mercaptoundecanoic acid capped silver nanoparticles. Spectrochim Acta - Part A Mol Biomol Spectrosc 72:841–844. https://doi.org/10.1016/j.saa.2008.12.004

    Article  CAS  Google Scholar 

  12. Alagumuthu G, Kirubha R (2012) Synthesis and characterisation of silver nanoparticles in different medium. Open J Synth Theory Appl 01:13–17. https://doi.org/10.4236/ojsta.2012.12003

    Article  CAS  Google Scholar 

  13. Caldera-Villalobos M, Herrera-González AM, García-Serrano J (2018) Polyelectrolytes based on poly(p-acryloyloxybenzaldehyde) with arsonic acid groups useful in the colloidal synthesis of silver nanoparticles. J Polym Res 25:190. https://doi.org/10.1007/s10965-018-1582-7

    Article  CAS  Google Scholar 

  14. Kyrychenko A, Korsun OM, Gubin II, Kovalenko SM, Kalugin ON (2015) Atomistic simulations of coating of silver nanoparticles with poly(vinylpyrrolidone) oligomers: effect of oligomer chain length. J Phys Chem C 119:7888–7899. https://doi.org/10.1021/jp510369a

    Article  CAS  Google Scholar 

  15. Mirzaei A, Janghorban K, Hashemi B et al (2017) Characterization and optical studies of PVP-capped silver nanoparticles. J Nanostructure Chem 7:37–46. https://doi.org/10.1007/s40097-016-0212-3

    Article  CAS  Google Scholar 

  16. Pencheva D, Bryaskova R, Kantardjiev T (2012) Polyvinyl alcohol/silver nanoparticles (PVA/AgNps) as a model for testing the biological activity of hybrid materials with included silver nanoparticles. Mater Sci Eng C 32:2048–2051. https://doi.org/10.1016/j.msec.2012.05.016

    Article  CAS  Google Scholar 

  17. Slepička P, Elashnikov R, Ulbrich P, Staszek M, Kolská Z, Svorcík V (2015) Stabilization of sputtered gold and silver nanoparticles in PEG colloid solutions. J Nanoparticle Res 17:11. https://doi.org/10.1007/s11051-014-2850-z

    Article  CAS  Google Scholar 

  18. Herrera-González AM, Caldera-Villalobos M, Bocardo-Tovar PB, García-Serrano J (2018) Synthesis of gold colloids using polyelectrolytes and macroelectrolytes containing arsonic moieties. Colloid Polym Sci 296:961–969. https://doi.org/10.1007/s00396-018-4309-8

    Article  CAS  Google Scholar 

  19. Herrera-González AM, García-Serrano J, Caldera-Villalobos M (2018) Synthesis and stabilization of Au nanoparticles in colloidal solution using macroelectrolytes with sulfonic acid groups. J Appl Polym Sci 135:45888. https://doi.org/10.1002/app.45888

    Article  CAS  Google Scholar 

  20. Si S, Bhattacharjee RR, Banerjee A, Mandal TK (2006) A mechanistic and kinetic study of the formation of metal nanoparticles by using synthetic tyrosine-based oligopeptides. Chem A Eur J 12:1256–1265. https://doi.org/10.1002/chem.200500834

    Article  CAS  Google Scholar 

  21. Si S, Mandal TK (2007) Tryptophan-based peptides to synthesize gold and silver nanoparticles: a mechanistic and kinetic study. Chem A Eur J 13:3160–3168. https://doi.org/10.1002/chem.200601492

    Article  CAS  Google Scholar 

  22. Kulkarni R, Harip S, Kumar AR, Deobagkar D, Zinjarde S (2018) Peptide stabilized gold and silver nanoparticles derived from the mangrove isolate Pseudoalteromonas lipolytica mediate dye decolorization. Colloids Surf A Physicochem Eng Asp 555:180–190. https://doi.org/10.1016/j.colsurfa.2018.06.083

    Article  CAS  Google Scholar 

  23. Konował E, Sybis M, Modrzejewska-Sikorska A, Milczarek G (2017) Synthesis of dextrin-stabilized colloidal silver nanoparticles and their application as modifiers of cement mortar. Int J Biol Macromol 104:165–172. https://doi.org/10.1016/j.ijbiomac.2017.06.011

    Article  PubMed  CAS  Google Scholar 

  24. Bankura K, Rana D, Mollick MMR, Pattanayak S, Bhowmick B, Saha NR, Roy I, Midya T, Barman G, Chattopadhyay D (2015) Dextrin-mediated synthesis of Ag NPs for colorimetric assays of Cu2+ ion and Au NPs for catalytic activity. Int J Biol Macromol 80:309–316. https://doi.org/10.1016/j.ijbiomac.2015.06.058

    Article  PubMed  CAS  Google Scholar 

  25. Villanueva ME, Ghibaudo MF, Tovar GI, Copello GJ, Dall’Orto V (2020) Oligomer-stabilized silver nanoparticles for antimicrobial coatings for plastics. Nano-Structures and Nano-Objects 24:100610. https://doi.org/10.1016/j.nanoso.2020.100610

    Article  CAS  Google Scholar 

  26. Wang Y, Corbitt TS, Jett SD, Tang Y, Schanze KS, Chi EY, Whitten DG (2012) Direct visualization of bactericidal action of cationic conjugated polyelectrolytes and oligomers. Langmuir 28:65–70. https://doi.org/10.1021/la2044569

    Article  PubMed  CAS  Google Scholar 

  27. Wang Y, Jett SD, Crum J, Schanze KS, Chi EY, Whitten DG (2013) Understanding the dark and light-enhanced bactericidal action of cationic conjugated polyelectrolytes and oligomers. Langmuir 29:781–792. https://doi.org/10.1021/la3044889

    Article  PubMed  CAS  Google Scholar 

  28. Wang Y, Chi EY, Natvig DO, Schanze KS, Whitten DG (2013) Antimicrobial activity of cationic conjugated polyelectrolytes and oligomers against saccharomyces cerevisiae vegetative cells and ascospores. ACS Appl Mater Interfaces 5:4555–4561. https://doi.org/10.1021/am400220s

    Article  PubMed  CAS  Google Scholar 

  29. Lee TS, Ahn H, Park WH, Sohn BH, Kim MJ, Kim DY (2003) Synthesis and optical properties of an azoaromatic, chromophore-functionalized, oligomeric polyelectrolyte. J Polym Sci Part A Polym Chem 41:1196–1201. https://doi.org/10.1002/pola.10670

    Article  CAS  Google Scholar 

  30. Kim HC, Kim MH, Park WH (2018) Polyelectrolyte complex nanofibers from poly(γ-glutamic acid) and fluorescent chitosan oligomer. Int J Biol Macromol 118:238–243. https://doi.org/10.1016/j.ijbiomac.2018.06.035

    Article  PubMed  CAS  Google Scholar 

  31. Sawada H, Sasaki A, Sasazawa K, Toriba K, Kakehi H, Miura M, Isu N (2008) Preparation of colloidal stable fluoroalkyl end-capped oligomer/silver nanocomposites-application to the surface modification of traditional organic polymers with these composites. Polym Adv Technol 19:419–424. https://doi.org/10.1002/pat

    Article  CAS  Google Scholar 

  32. Herrera González AM, Caldera Villalobos M, García-Serrano J, Peláez Cid AA (2016) Polyelectrolytes with sulfonic acid groups useful in the synthesis and stabilization of Au and Ag nanoparticles. Des Monomers Polym 19:330–339. https://doi.org/10.1080/15685551.2016.1152543

    Article  CAS  Google Scholar 

  33. Maayan G, Liu LK (2011) Silver nanoparticles assemblies mediated by functionalized biomimetic oligomers. Biopolymers 96:679–687. https://doi.org/10.1002/bip.21632

    Article  PubMed  CAS  Google Scholar 

  34. Malynych S, Luzinov I, Chumanov G (2002) Poly(vinyl pyridine) as a universal surface modifier for immobilization of nanoparticles. J Phys Chem B 106:1280–1285. https://doi.org/10.1021/jp013236d

    Article  CAS  Google Scholar 

  35. Rahim S, Khalid S, Bhanger MI, Shah MR, Malik MI (2018) Polystyrene-block-poly(2-vinylpyridine)-conjugated silver nanoparticles as colorimetric sensor for quantitative determination of Cartap in aqueous media and blood plasma. Sensors Actuators, B Chem 259:878–887. https://doi.org/10.1016/j.snb.2017.12.138

    Article  CAS  Google Scholar 

  36. Rivero PJ, Goicoechea J, Urrutia A (2013) Effect of both protective and reducing agents in the synthesis of multicolor silver nanoparticles. Nanoscale Res Lett 8:101. https://doi.org/10.1186/1556-276X-8-101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Liz-Marzán LM (2004) Nanometals: formation and color. Mater Today 7(2):26–31. https://doi.org/10.1016/S1369-7021(04)00080-X

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana M. Herrera-González.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyes-Angeles, M.C., Caldera-Villalobos, M., García-Serrano, J. et al. Green synthesis of 1D and 0D Ag nanostructures using oligomeric polyelectrolytes as reducing and stabilizing agents. Colloid Polym Sci 300, 961–971 (2022). https://doi.org/10.1007/s00396-022-05002-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-022-05002-z

Keywords

Navigation