Skip to main content
Log in

Rheological properties of nanocomposite hydrogels containing aluminum and zinc oxides with potential application for conformance control

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Polymer hydrogels are a promising category of materials for conformance control of oil reservoirs. One of the main difficulties of this application is the severe temperature and salinity of many reservoirs. Nanotechnology is an alternative to improve the performance of gels, by enabling the insertion of reinforcement fillers in their composition, enhancing rheological properties, e.g., tan(delta) measurements. This study evaluated the properties of hydrogels based on partially hydrolyzed polyacrylamide (HPAM), with different molar masses, crosslinked with polyethyleneimine (PEI), with or without aluminum or zinc oxide. For simulation of one real reservoir characteristic, gelling systems were prepared with synthetic brine containing 29.940 mg/L of total dissolved solids (TDS) and aged at a temperature of 70 °C. The concentrations of 5000 mg/L of HPAM and 2200 mg/L of PEI were chosen to obtain nanocomposite hydrogels containing 50, 100, or 200 mg/L of oxides. The hydrogels were evaluated by means of the gel strength code, rheological tests, Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The results indicated that the best rheological properties were obtained by the nanocomposite hydrogels when compared to conventional hydrogels when aged at 70 °C. The viscous modulus/elastic modulus ratio (G″/G′) and tan(delta) factor indicated that the decrease of the elastic component began after 7 days for the conventional hydrogels and after 15 days for the nanocomposite hydrogels. The best filler concentration was 200 mg/L according to the tan(delta) values. The micrographs confirmed the presence of metal oxide particles in the polymer matrix, which possibly contributed to strengthening the structure of these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Adewunmi AA, Ismail S, Sultan AS (2014) Study on strength and gelation time of polyacrylamide/polyethyleneimine composite gels reinforced with coal fly ash for water shut-off treatment. J Appl Polym Sci 132:1–8. https://doi.org/10.1002/app.41392

    Article  CAS  Google Scholar 

  2. Lashari ZA, Yang H, Zhu Z, Tang X, Cao C, Iqbal MW, Kang W (2018) Experimental research of high strength thermally stable organic composite polymer gel. J Mol Liq 263:118–124. https://doi.org/10.1016/j.molliq.2018.04.146

    Article  CAS  Google Scholar 

  3. Abdulbaki M, Huh C, Sepehrnoori K, Delshad M, Varavei A (2014) A critical review on use of polymer microgels for conformance control purposes. J Petrol Sci Eng 122:741–753. https://doi.org/10.1016/j.petrol.2014.06.034

    Article  CAS  Google Scholar 

  4. Chung T, Bae W, Nguyen NTB, Dang CTQ, Lee W, Jung B (2011) A review of polymer conformance treatment: a successful guideline for water control in mature fields. Energy Sources A: Recovery Util Environ Eff 34:122–133. https://doi.org/10.1080/15567030903567683

    Article  Google Scholar 

  5. El-Karsani KSM, Al-Muntasheri GA, Hussein I (2014) A. Polymer systems for water shutoff and profile modification: a review over the last decade. SPE J 19:135–149. https://doi.org/10.2118/163100-PA

    Article  Google Scholar 

  6. Pereira KAB, Aguiar KLNP, Oliveira PF, Vicente BM, Pedroni LG, Mansur CRE (2020) Synthesis of hydrogel nanocomposites based on partially hydrolyzed polyacrylamide, polyethyleneimine, and modified clay. ACS Omega 10:4759–4769. https://doi.org/10.1021/acsomega.9b02829

    Article  CAS  Google Scholar 

  7. Aldhaheri MN, Wei M, Bai B (2016) Comprehensive guidelines for the application of in-situ polymer gels for injection well conformance improvement based on field projects. SPE J 1–27. https://doi.org/10.2118/179575-MS

  8. Goudarzi A, Zhang H, Varavei A, Taksaudom P, Hu Y, Delshad M, Bai B, Sepehrnoori K (2015) A laboratory and simulation study of preformed particle gels for water conformance control. Fuel 140:502–513. https://doi.org/10.1016/j.fuel.2014.09.081

    Article  CAS  Google Scholar 

  9. Pereira KAB, Pereira KAB, Oliveira PF, Mansur CRE (2020) Behavior of partially hydrolyzed polyacrylamide/polyethyleneimine reinforced with coal fly ash for preformed particle hydrogels. J Appl Polym Sci 137:1–13. https://doi.org/10.1002/app.49423

    Article  CAS  Google Scholar 

  10. Vargas-Vasquez SM, Romero-Zerón LB (2008) A review of the partly hydrolyzed polyacrylamide Cr(III) acetate polymer gels. J Pet Sci Eng 26:481–498. https://doi.org/10.1080/10916460701204594

    Article  CAS  Google Scholar 

  11. Rathod H, Mehta D (2015) A review on pharmaceutical gel. Int J Pharm Sci Res 1:33–47

    Google Scholar 

  12. Sun F, Lin M, Dong Z, Zhu D, Wang SL, Yang J (2016) Effect of composition of HPAM/Chromium (III) Acetate Gels on Delayed Gelation Time. J Dispersion Sci Technol 37:753–759. https://doi.org/10.1080/01932691.2015.1041034

    Article  CAS  Google Scholar 

  13. Tessarolli FGC, Queirós YGC, Mansur CRE (2014) Evaluation of pH-Sensitive hydrogels to control the permeability anisotropy of oil reservoirs. J Appl Polym Sci 131:40665–40676. https://doi.org/10.1002/app.40665

    Article  CAS  Google Scholar 

  14. Al-Muntasheri GA, Nasr-El-Din HA, Hussein IA (2007) A rheological investigation of a high temperature organic gel used for water shut-off treatments. J Petrol Eng 59:73–83. https://doi.org/10.1016/j.petrol.2007.02.010

    Article  CAS  Google Scholar 

  15. He H, Wang Y, Qi Z, Sun X (2017) Gelation Performance and Feasibility study of an environmental friendly improved Inorganic aluminum gel for conformance control under harsh reservoir conditions. Am Soc Mech Eng 139:1–7. https://doi.org/10.1115/1.4035512

    Article  CAS  Google Scholar 

  16. Jia H, Zhao J, Jin F, Pu W, Li Y, Li K, Li J (2012) New insights into the gelation behavior of polyethyleneimine cross-linking partially hydrolyzed polyacrylamide gels. Ind Eng Chem Res 51:12155–12166. https://doi.org/10.1021/ie301818f

    Article  CAS  Google Scholar 

  17. Jia H, Chen H, Guo S (2017) Fluid loss control mechanism of using polymer gel pill based on multi-crosslinking during overbalanced well workover and completion. Fuel 210:207–216. https://doi.org/10.1016/j.fuel.2017.08.032

    Article  CAS  Google Scholar 

  18. Ma L, Wang S, Long Y, Zhu C, Yang H, Yang T, Liu X, Li X, Bai B, Kang W (2017) Novel environmentally benign hydrogel: nano-silica hybrid hydrolyzed polyacrylamide/polyethyleneimine gel system for conformance improvement in high temperature high salinity reservoir. Soc Petrol Eng. https://doi.org/10.2118/188654-MS

    Article  Google Scholar 

  19. Sengupta B, Sharma VP, Udayabhanu G (2014) In-situ gelation studies of an eco-friendly cross-linked polymer system for water shut-off at high temperatures. Energy Sources  A: Recovery Util Environ Eff 36:1445–1467. https://doi.org/10.1080/15567036.2011.553661

    Article  CAS  Google Scholar 

  20. Adewunmi AA, Ismail S, Sultan AS (2018) Crosslinked polyacrylamide composite hydrogels impregnated with fly ash: synthesis, characterization and their application as fractures sealant for high water producing zones in oil and gas wells. J Polym Environ 12:1–13. https://doi.org/10.1007/s10924-018-1204-9

    Article  CAS  Google Scholar 

  21. Amaral CNR, Oliveira PF, Pedroni LG, Mansur CRE (2021) Viscoelastic behavior of hydrogel-based xanthan gum/aluminum lactate with potential applicability for conformance control. J Appl Polym Sci 138:1–14. https://doi.org/10.1002/app.50640

    Article  CAS  Google Scholar 

  22. Chen L, Wang J, Yu L, Zhang Q, Fu M, Zhao Z, Zuo J (2018) Experimental investigation on nano-silica reinforcing PAM/PEI hydrogel for water shutoff treatment. Energy Fuels 33:1–16. https://doi.org/10.1021/acs.energyfuels.8b00840

    Article  CAS  Google Scholar 

  23. Sun F, Lin M, Dong Z, Zhang J, Wang C, Wang S, Song F (2015) Nanosilica-induced high mechanical strength of nanocomposite hydrogel for killing fluids. J Colloid Interface Sci 458:45–52. https://doi.org/10.1016/j.jcis.2015.07.006

    Article  CAS  PubMed  Google Scholar 

  24. Xin H, Ao D, Wang X, Zhu Y, Zhang JTY (2015) Synthesis, characterization, and properties of copolymers of acrylamide with sodium 2-acrylamido-2-methylpropane sulfonate with nano silica structure. Colloid Polym Sci 293:1307–1316. https://doi.org/10.1007/s00396-015-3512-0

    Article  CAS  Google Scholar 

  25. Zhu D, Wei L, Wang B, Feng Y (2014) Aqueous hybrids of silica nanoparticles and hydrophobically associating hydrolyzed polyacrylamide used for eor in high-temperature and high-salinity reservoirs. Energies 7:3858–3871. https://doi.org/10.3390/en7063858

    Article  CAS  Google Scholar 

  26. Aalaie J, Vasheghani-farahani E, Rahmatpour A (2008) Effect ofmontmorillonite on gelation and swelling behavior of sulfonated polyacrylamide nanocomposite hydrogels in electrolyte solutions. Eur Polym J 44:2024–2031. https://doi.org/10.1016/j.eurpolymj.2008.04.031

  27. Aguiar KL, Pereira KA, Mendes MS, Pedroni LG, Oliveira PF, Mansur CR (2020) Study of the modification of bentonite for the formation of nanocomposite hydrogels with potential applicability in conformance control. J Petrol Sci Eng 195. https://doi.org/10.1016/j.petrol.2020.107600

  28. Helvacioglu E, Aydin V, Nugay T, Nugay N, Uluocak BG, Sen S (2011) High strength poly(acrylamide)-clay hydrogels. J Polym Res 18:2341–2350. https://doi.org/10.1007/s10965-011-9647-x

    Article  CAS  Google Scholar 

  29. Okay O, Oppermann W (2007) Polyacrylamide-clay nanocomposite hydrogels: rheological and light scattering characterization. Macromolecules 40:3378–3387. https://doi.org/10.1021/ma062929v

    Article  CAS  Google Scholar 

  30. Tongwa P, Nygaard R, Bai B (2012) Evaluation of a nanocomposite hydrogel for water shut-off in enhanced oil recovery applications: design, synthesis, and characterization. J Appl Polym Sci 128:787–794. https://doi.org/10.1002/app.38258

    Article  CAS  Google Scholar 

  31. Yan F, Zhang X, Ren H, Meng X, Qiu D (2017) Reinforcement of polyacrylamide hydrogel with patched laponite-polymer composite particles. Colloids Surf A 529:268–273. https://doi.org/10.1016/j.colsurfa.2017.06.005

    Article  CAS  Google Scholar 

  32. Adewunmi AA, Ismail S, Sultan AS (2016) Carbon nanotubes (CNTs) nanocomposite developed for various applications: a critical review. J Inorg Organomet Polym Mater 26:717–737. https://doi.org/10.1007/s10904-016-0379-6

    Article  CAS  Google Scholar 

  33. Evingur GA, Pekcan O (2014) Effect of multiwalled carbon nanotube (MWNT) on behavior of swelling of polyacrylamide-MWNT composites. J Reinf Plast Compos 33:1119–1206. https://doi.org/10.1177/0731684414526438

    Article  CAS  Google Scholar 

  34. Li Z, Tang M, Dai J, Wang T, Bai R (2016) Effect of multiwalled carbon nanotube-grafted polymer brushes on the mechanical and swelling properties of polyacrylamide composite hydrogels. Polymer 85:67–76. https://doi.org/10.1016/j.polymer.2016.01.025

    Article  CAS  Google Scholar 

  35. Satarkar NS, Johnson D, Marrs B, Andrews R, Poh C, Gharaibeh B, Saito K, Anderson KW, Hilt JZ (2010) Hydrogel-MWCNT Nanocomposites: synthesis, characterization, and heating with radiofrequency fields. J Appl Polym Sci 117:1813–1819. https://doi.org/10.1002/app.32138

    Article  CAS  Google Scholar 

  36. Sudha BMM, Kumar D (2014) Effect of multiwalled carbon nanotubes on the conductivity and swelling properties of porous polyacrylamide hydrogels. Part Sci Technol 32:624–631. https://doi.org/10.1080/02726351.2014.948974

  37. Jiang L, Liu P (2014) Design of magnetic attapulgite/fly ash/poly(acrylic acid) ternary nanocomposite hydrogels and performance evaluation as selective adsorbent for Pb2+ Ion. ACS Sustain Chem Eng 2:1785–1794. https://doi.org/10.1021/sc500031z

    Article  CAS  Google Scholar 

  38. Singh R, Mahto V, Vuthaluru H (2018) Development of a novel fly ash-polyacrylamide nanocomposite gel system for improved recovery of oil in heterogeneous reservoir. J Petrol Sci Eng 165:325–331. https://doi.org/10.1016/j.petrol.2018.02.038

    Article  CAS  Google Scholar 

  39. Ge S, Liu Q, Li M, Liu J, Lu H, Li F, Zhang S, Sun Q, Xiong L (2018) Enhanced mechanical properties and gelling ability of gelatin hydrogels reinforced with whiskers. Food Hydrocoll 75:1–12. https://doi.org/10.1016/j.foodhyd.2017.09.023

    Article  CAS  Google Scholar 

  40. Hasankhani GM, Madani M, Esmaeilzadeh F, Mowla D (2019) Experimental investigation of asphaltene-augmented gel polymer performance for water shut-off and enhancing oil recovery in fractured oil reservoirs. J Mol Liq 275:654–666. https://doi.org/10.1016/j.molliq.2018.11.012

    Article  CAS  Google Scholar 

  41. Liu G, Jiang H, Li J, Wang M, Chen F, Ding S (2015) Evaluation of the performance of polymer gels mixed with asphalt particle as a novel composite profile control system. J Ind Eng Chem 26:309–314. https://doi.org/10.1016/j.jiec.2014.11.044

    Article  CAS  Google Scholar 

  42. Zhou C, Wu Q, Yue Y, Zhang Q (2011) Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels. J Colloid Interface Sci 353:116–123. https://doi.org/10.1016/j.jcis.2010.09.035

    Article  CAS  PubMed  Google Scholar 

  43. Kumar A, Srivastava V, Mahto V, Choubey AK (2021) Polyvinylpyrrolidone-resorcinol-formaldehyde hydrogel system reinforced with bio-synthesized zinc-oxide for water shut-off in heterogeneous reservoir: an experimental investigation. Oil Gas Sci Technol Revue d'IFP Energies Nouvelles 76:1–15. https://doi.org/10.2516/ogst/2021043

  44. Bishnoi A, Kumar S, Joshi N (2017) Wide angle x-ray diffraction (WXRD): Technique for characterization of nanomaterials and polymer nanocomposites. Microscopy Methods in Nanomaterials 313–337. https://doi.org/10.1016/B978-0-323-46141-2.00009-2

  45. Sydansk RD (1988) A new conformance-improvement-treatment chromium(lll) gel technology. Soc Petrol Eng. https://doi.org/10.2118/17329-MS

    Article  Google Scholar 

  46. Laun M (2016) TA Instruments. Understanding rheology of structured fluids. AAN016. Available at: http://tainstruments.com/pdf/literature/AAN016_V1_U_StructFluids.pdf

  47. Vega I, Morris W, Robles J, Peacock H, Marin A (2010) Water shut-off polymer systems: design and efficiency evaluation based on experimental studies. Soc Pet Eng Oklahoma 28 Apr 2010. https://doi.org/10.2118/129940-MS. Available at https://www.onepetro.org/conference-paper/SPE-129940-MS. Consulted on 17 July 2019

  48. Haraguchi K, Li H, Matsuda K, Takehisa T, Elliott E (2005) Mechanism of forming organic/inorganic network structures during in-situ free-radical polymerization in PNIPA−clay nanocomposite hydrogels. Macromolecules 38:3482–3490. https://doi.org/10.1021/ma047431c

Download references

Acknowledgements

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ), by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and by Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia R. E. Mansur.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, K.A.B., Oliveira, P.F., Chaves, I. et al. Rheological properties of nanocomposite hydrogels containing aluminum and zinc oxides with potential application for conformance control. Colloid Polym Sci 300, 609–624 (2022). https://doi.org/10.1007/s00396-022-04978-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-022-04978-y

Keywords

Navigation