Skip to main content
Log in

Graphene oxide-Fe3O4 nanocomposite used as aniline adsorbent with a wide pH range

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this paper, the graphene oxide-Fe3O4 nanocomposite was prepared by introducing Fe3O4 and silane coupling agent containing sulfonic acid groups on the surface of GO. The morphology and structure of nanocomposites were characterized by a series of equipments, and the property of s-GO-Fe3O4 as aniline adsorbent was studied. The Fe3O4 particle is introduced to add magnetic property to GO magnetism and can eliminate the agglomeration of GO sheets. The addition of sulfonic groups improved the dispersion of nanocomposite and eliminated electrostatic repulsion. Thus, the nanocomposite shows high aniline adsorption capacity in a wide pH region and does not show high correlation with pH value. In addition, FTIR and XPS spectrum analyses showed that the adsorption of aniline by s-GO-Fe3O4 is the combined effects of π–π interaction, acid–base reaction, and hydrogen bonds. Furthermore, the adsorption of aniline of this nanocomposite follows the pseudo-second-order kinetic model and Freundlich isotherm model. Thus, s-GO-Fe3O4 is a promising nanosorbent for aniline removal from organic wastewater.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ratti M, Canonica S, McNeill K, Bolotin J, Hofstetter TB (2015) Isotope fractionation associated with the indirect photolysis of substituted anilines in aqueous solution. Environ Sci Technol 49:12766–12773. https://doi.org/10.1021/acs.est.5b03119

    Article  CAS  PubMed  Google Scholar 

  2. Li L, Meng QG, Lv HQ, Shui LL, Zhang YG, Zhang Z, Chen ZH, Yuan MZ, Notzel R, Wang X, Liu JM, Zhou GF (2018) Synthesis of barbituric acid doped carbon nitride for efficient solar-driven photocatalytic degradation of aniline. Appl Surf Sci 428:739–747. https://doi.org/10.1016/j.apsusc.2017.09.161

    Article  CAS  Google Scholar 

  3. Li L, Liang M, Huang J, Zhang S, Liu Y, Li FY (2020) Fe and Cu co-doped graphitic carbon nitride as an eco-friendly photo-assisted catalyst for aniline degradation. Environ Sci Pollut Res 27:29391–29407. https://doi.org/10.1007/s11356-020-08148-x

    Article  CAS  Google Scholar 

  4. Yao L, Yang H, Chen ZS, Qiu MQ, Hu BW, Wang XX (2021) Bismuth oxychloride-based materials for the removal of organic pollutants in wastewater. Chemosphere 273:128576. https://doi.org/10.1016/j.chemosphere.2020.128576

    Article  CAS  Google Scholar 

  5. Zou YT, Hu YZ, Shen ZW, Yao L, Tang DY, Zhang S, Wang SQ, Hu BW, Zhao GX, Wang XK (2022) Application of aluminosilicate clay mineral-based composites in photocatalysis. J Environ Sci 115:190–214. https://doi.org/10.1016/j.jes.2021.07.015

    Article  Google Scholar 

  6. Li XH, Jin XD, Zhao NN, Angelidaki I, Zhang YF (2017) Efficient treatment of aniline containing wastewater in bipolar membrane microbial electrolysis cell-Fenton system. Water Res 119:67–72. https://doi.org/10.1016/j.watres.2017.04.047

    Article  CAS  PubMed  Google Scholar 

  7. Zhang J, Zhang Y, Wang H, Guan X (2014) Ru(III) catalyzed permanganate oxidation of aniline at environmentally relevant pH. J Environ Sci 26:1395–1402. https://doi.org/10.1007/BF00201002

    Article  CAS  Google Scholar 

  8. Zhu X, Hu WW, Feng CP, Chen N, Chen HY, Kuang PJ, Deng Y, Ma LL (2021) Electrochemical oxidation of aniline using Ti/RuO2-SnO2 and Ti/RuO2-IrO2 as anode. Chemosphere 269:128734. https://doi.org/10.1016/j.chemosphere.2020.128734

    Article  CAS  PubMed  Google Scholar 

  9. Jin Q, Hu ZC, Jin ZF, Qiu LQ, Zhong WH, Pan ZY (2012) Biodegradation of aniline in an alkaline environment by a novel strain of the halophilic bacterium, Dietzia natronolimnaea JQ-AN. Bioresource Technol 117:148–154. https://doi.org/10.1016/j.biortech.2012.04.068

    Article  CAS  Google Scholar 

  10. Qin XM, Hua YD, Sun H, Xie JY, Zhao YS (2020) Visualization study on aniline-degrading bacteria AN-1 transport in the aquifer with the low-permeability lens. Water Res 186:116329. https://doi.org/10.1016/j.watres.2020.116329

    Article  CAS  PubMed  Google Scholar 

  11. An FQ, Feng XQ, Gao BJ (2010) Adsorption property and mechanism of composite adsorbent PMAA/SiO2 for aniline. J Hazard Mater 178:499–504. https://doi.org/10.1016/j.jhazmat.2010.01.109

    Article  CAS  PubMed  Google Scholar 

  12. Jiang LY, Liu L, Xiao SD, Chen JM (2016) Preparation of a novel manganese oxide-modified diatomite and its aniline removal mechanism from solution. Chem Eng J 284:609–619. https://doi.org/10.1016/j.cej.2015.08.140

    Article  CAS  Google Scholar 

  13. Han TT, Li CF, Guo XY, Huang HL, Liu DH, Zhong CL (2016) In-situ synthesis of SiO2@MOF composites for high-efficiency removal of aniline from aqueous solution. Appl Surf Sci 390:506–512. https://doi.org/10.1016/j.apsusc.2016.08.111

    Article  CAS  Google Scholar 

  14. Li HY, Liu LX, Cui JG, Cui JL, Wang F, Zhang F (2020) High-efficiency adsorption and regeneration of methylene blue and aniline onto activated carbon from waste edible fungus residue and its possible mechanism. RSC Adv 10:14262–14273. https://doi.org/10.1039/d0ra01245a

    Article  CAS  Google Scholar 

  15. Jiang D, Yang J, Wang DH (2020) Green carbon material for organic contaminants adsorption. Langmuir 36:3141–3148. https://doi.org/10.1021/acs.langmuir.9b03811

    Article  CAS  PubMed  Google Scholar 

  16. Li Q, Chen ZS, Wang HH, Yang H, Wen T, Wang SQ, Hu BW, Wang XK (2021) Removal of organic compounds by nanoscale zero-valent iron and its composites. Sci Total Environ 792:148546. https://doi.org/10.1016/j.scitotenv.2021.148546

    Article  CAS  PubMed  Google Scholar 

  17. Liang LP, Xi FF, Tan WS, Meng X, Hu BW, Wang XK (2021) Review of organic and inorganic pollutants removal by biochar and biochar-based composites. Biochar 3:255–281. https://doi.org/10.1007/s42773-021-00101-6

    Article  Google Scholar 

  18. Gan YQ, Chen G, Sang YF, Zhou F, Man RL, Huang JH (2019) Oxygen-rich hyper-cross-linked polymers with hierarchical porosity for aniline adsorption. Chem Eng J 368:29–36. https://doi.org/10.1016/j.cej.2019.02.164

    Article  CAS  Google Scholar 

  19. Hao MJ, Qiu MQ, Yang H, Hu BW, Wang XX (2021) Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis. Sci Total Environ 760:143333. https://doi.org/10.1016/j.scitotenv.2020.143333

    Article  CAS  PubMed  Google Scholar 

  20. Yu SJ, Pang HW, Huang SY, Tang H, Wang SQ, Qiu MQ, Chen ZS, Yang H, Song G, Fu D, Hu BW, Wang XX (2021) Recent advances in metal-organic framework membranes for water treatment: a review. Sci Total Environ 800:149662. https://doi.org/10.1016/j.scitotenv.2021.149662

    Article  CAS  PubMed  Google Scholar 

  21. Zhang S, Wang JQ, Zhang Y, Ma JZ, Huang LTY, Yu SJ, Chen L, Song G, Qiu MQ, Wang XX (2021) Applications of water-stable metal-organic frameworks in the removal of water pollutants: a review. Environ Pollut 291:118076. https://doi.org/10.1016/j.envpol.2021.118076.

  22. Lian ZY, Xu YY, Zuo J, Qian H, Luo ZW, Wei WJ (2020) Preparation of PP-g-(AA-MAH) fibers using suspension grafting and melt-blown spinning and its adsorption for aniline. Polymers 12:2157. https://doi.org/10.3390/polym12092157

    Article  CAS  PubMed Central  Google Scholar 

  23. Kuilla T, Bhadra S, Yao DH, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375. https://doi.org/10.1016/j.progpolymsci.2010.07.005

    Article  CAS  Google Scholar 

  24. Wang J, Chen ZM, Chen BL (2014) Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets. Environ Sci Technol 48:4817–4825. https://doi.org/10.1021/es405227u

    Article  CAS  PubMed  Google Scholar 

  25. Ai YJ, Liu Y, Huo YZ, Zhao CF, Sun L, Han B, Cao XR, Wang XK (2019) Insights into the adsorption mechanism and dynamic behavior of tetracycline antibiotics on reduced graphene oxide (RGO) and graphene oxide (GO) materials. Environ Sci Nano 6:3336–3348. https://doi.org/10.1039/c9en00866g

    Article  CAS  Google Scholar 

  26. Tang H, Zhang SY, Huang TL, Cui FY, Xing BS (2020) pH-Dependent adsorption of aromatic compounds on graphene oxide: an experimental, molecular dynamics simulation and density functional theory investigation. J Hazard Mater 395:122680. https://doi.org/10.1016/j.jhazmat.2020.122680

    Article  CAS  PubMed  Google Scholar 

  27. Hemmat K, Khodabakhshi MR, Moghaddam AZ (2020) Synthesis of nanoscale zero-valent iron modified graphene oxide nanosheets and its application for removing tetracycline antibiotic: response surface methodology. Appl Organomet Chem 35:e6059. https://doi.org/10.1002/aoc.6059

    Article  CAS  Google Scholar 

  28. Zou SJ, Chen YF, Zhang Y, Wang XF, You N, Fan HT (2021) A hybrid sorbent of alpha-iron oxide/reduced graphene oxide: studies for adsorptive removal of tetracycline antibiotics. J Alloys Compd 863:158475. https://doi.org/10.1016/j.jallcom.2020.158475

    Article  CAS  Google Scholar 

  29. Xikhongelo RV, Mtunzi FM, Diagboya PN, Olu-Owolabi BI, Düring R-A (2021) Polyamidoamine-functionalized graphene oxide–SBA-15 mesoporous composite: adsorbent for aqueous arsenite, cadmium, ciprofloxacin, ivermectin, and tetracycline. Ind Eng Chem Res 60:3957–3968. https://doi.org/10.1021/acs.iecr.0c04902

    Article  CAS  Google Scholar 

  30. Zhu W, Jiang X, Liu F, You F, Yao C (2020) Preparation of chitosan-graphene oxide composite aerogel by hydrothermal method and Its adsorption property of methyl orange. Polymers 12:2169. https://doi.org/10.3390/polym12092169

    Article  CAS  PubMed Central  Google Scholar 

  31. Mahmoudi E, Azizkhani S, Mohammad AW, Ng LY, Benamor A, Ang WL, Abbad MB (2020) Simultaneous removal of Congo red and cadmium(II) from aqueous solutions using graphene oxide-silica composite as a multifunctional adsorbent. J Environ Sci 98:151–160. https://doi.org/10.1016/j.jes.2020.05.013

    Article  Google Scholar 

  32. Diagboya PN, Olu-Owolabi BI, Zhou D, Han B-H (2014) Graphene oxide–tripolyphosphate hybrid used as a potent sorbent for cationic dyes. Carbon 79:174–182. https://doi.org/10.1016/j.carbon.2014.07.057

    Article  CAS  Google Scholar 

  33. Sherlala AIA, Raman AAA, BelloMM AA (2018) A review of the applications of organo-functionalized magnetic graphene oxide nanocomposites for heavy metal adsorption. Chemosphere 193:1004–1017. https://doi.org/10.1016/j.chemosphere.2017.11.093

    Article  CAS  PubMed  Google Scholar 

  34. Lee J, Park JA, Kim HG, Lee JH, Cho SH, Choi K, Jung KW, Lee SY, Choi JW (2020) Most suitable amino silane molecules for surface functionalization of graphene oxide toward hexavalent chromium adsorption. Chemosphere 251:126387. https://doi.org/10.1016/j.chemosphere.2020.126387

    Article  CAS  PubMed  Google Scholar 

  35. Shang J, Guo Y, He D, Qu W, Tang Y, Zhou L, Zhu R (2021) A novel graphene oxide-dicationic ionic liquid composite for Cr(VI) adsorption from aqueous solutions. J Hazard Mater 416:125706–125706. https://doi.org/10.1016/j.jhazmat.2021.125706

    Article  CAS  PubMed  Google Scholar 

  36. Diagboya PN, Mmako HK, Dikio ED, Mtunzi FM (2019) Synthesis of amine and thiol dual functionalized graphene oxide for aqueous sequestration of lead. J Environ Chem Eng 7:103461. https://doi.org/10.1016/j.jece.2019.103461

    Article  CAS  Google Scholar 

  37. Nkutha CS, Diagboya PN, Mtunzi FM, Dikio ED (2020) Application of eco-friendly multifunctional porous graphene oxide for adsorptive sequestration of chromium in aqueous solution. Water Environ Res 92:1070–1079. https://doi.org/10.1002/wer.1303

    Article  CAS  PubMed  Google Scholar 

  38. Yao YJ, Miao SD, Liu SZ, Ma LP, Sun HQ, Wang SB (2012) Synthesis, characterization, and adsorption properties of magnetic Fe3O4@graphene nanocomposite. Chem Eng J 184:326–332. https://doi.org/10.1016/j.cej.2011.12.017

    Article  CAS  Google Scholar 

  39. Zanele ZP, Mtunzi FM, Nelana SM, Ebelegi AN, Ayawei N, Dikio ED, Wankasi D, Diagboya PN (2021) Metals and antibiotics as aqueous sequestration targets for magnetic polyamidoamine-grafted SBA-15. Langmuir 37:9764–9773. https://doi.org/10.1021/acs.langmuir.1c01255

    Article  CAS  Google Scholar 

  40. Diagboya PN, Dikio ED (2018) Scavenging of aqueous toxic organic and inorganic cations using novel facile magneto-carbon black-clay composite adsorbent. J Clean Prod 180:71–80. https://doi.org/10.1016/j.jclepro.2018.01.166

    Article  CAS  Google Scholar 

  41. Diagboya PN, Olu-Owolabi BI, Adebowale KO (2015) Synthesis of covalently bonded graphene oxide–iron magnetic nanoparticles and the kinetics of mercury removal. RSC Adv 5:2536–2542. https://doi.org/10.1039/c4ra13126f

    Article  CAS  Google Scholar 

  42. Mohubedu RP, Diagboya PN, Abasi CY, Dikio ED, Mtunzi F (2019) Magnetic valorization of biomass and biochar of a typical plant nuisance for toxic metals contaminated water treatment. J Clean Prod 209:1016–1024. https://doi.org/10.1016/j.jclepro.2018.10.215

    Article  CAS  Google Scholar 

  43. Chang YP, Ren CL, Qu JC, Chen XG (2012) Preparation and characterization of Fe3O4/graphene nanocomposite and investigation of its adsorption performance for aniline and p-chloroaniline. Appl Surf Sci 261:504–509. https://doi.org/10.1016/j.apsusc.2012.08.045

    Article  CAS  Google Scholar 

  44. Yang K, Wu WH, Jing QF, Zhu LZ (2008) Aqueous adsorption of aniline, phenol, and their substitutes by Multi-Walled carbon nanotubes. Environ Sci Technol 42:7931–7936. https://doi.org/10.1021/es801463v

    Article  CAS  PubMed  Google Scholar 

  45. Bai HP, Zheng YP, Wang TY, Peng NK (2016) Magnetic solvent-free nanofluid based on Fe3O4/polyaniline nanoparticles and its adjustable electric conductivity. J Mater Chem A 4:14392–14399. https://doi.org/10.1039/c6ta07025f

    Article  CAS  Google Scholar 

  46. Zhang Y, Li HJ, Li MC, Xin MH (2020) Adsorption of aniline on aminated chitosan/graphene oxide composite material. J Mol Struct 1209:127973. https://doi.org/10.1016/j.molstruc.2020.127973

    Article  CAS  Google Scholar 

  47. Sandhu IS, Chitkara M, Rana S, Dhillon G, Kumar S (2020) Photocatalytic performances of stand-alone graphene oxide (GO) and reduced graphene oxide (rGO) nanostructures. Opt Quant Electron 52:359. https://doi.org/10.1007/s11082-020-02473-8

    Article  CAS  Google Scholar 

  48. Bourlinos AB, Gournis D, Petridis D, Szabó T, Szeri A, Dékány I (2003) Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 19:6050–6055. https://doi.org/10.1021/la026525h

    Article  CAS  Google Scholar 

  49. Xiao GS, Gao X, Yan WT, Wu T, Peng XH (2019) Baeyer-Villiger oxidation of cyclohexanone by hydrogen peroxide with Fe3O4@GO as catalyst under solvent free conditions. Catal Letters 149:1765–2177. https://doi.org/10.1007/s10562-019-02765-z

    Article  CAS  Google Scholar 

  50. Sun XM, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai HJ (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1:203–212. https://doi.org/10.1007/s12274-008-8021-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yan H, Wu H, Li K, Wang YW, Tao X, Yang H, Li AM, Cheng RS (2015) Influence of the surface structure of graphene oxide on the adsorption of aromatic organic compounds from water. ACS Appl Mater Interfaces 7:6690–6697. https://doi.org/10.1021/acsami.5b00053

    Article  CAS  PubMed  Google Scholar 

  52. Gómez-Navarro C, Meyer JC, Sundaram RS, Chuvilin A, Kaiser U (2010) Atomic structure of reduced graphene oxide. Nano Lett 10:1144–1148. https://doi.org/10.1021/nl9031617

    Article  CAS  PubMed  Google Scholar 

  53. Yang K, Xing B (2010) Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application. Chem Rev 110:5989–6008. https://doi.org/10.1002/chin.201050270

    Article  CAS  PubMed  Google Scholar 

  54. Mattevi C, Eda G, Agnoli S, Miller S, Mkhoyan KA, Celik O, Celik O, Mastrogiovanni D, Granozzi G, Garfunkel E, Chhowalla M (2010) Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv Funct Mater 19:2577–2583. https://doi.org/10.1002/adfm.200900166

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (grant number 19KJB150037).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruilu Yang, Yaping Zheng or Jian Shi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Original Contribution

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Yang, R., Zheng, Y. et al. Graphene oxide-Fe3O4 nanocomposite used as aniline adsorbent with a wide pH range. Colloid Polym Sci 300, 83–93 (2022). https://doi.org/10.1007/s00396-021-04926-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04926-2

Keywords

Navigation