Skip to main content
Log in

Crystallization behavior and structure of metallocene polyethylene with long-chain branch

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The investigations of the branching chain have influence on the crystallization behaviors and structures in metallocene polyethylene (mPE) as compared to the Ziegler–Natta polyethylenes that have grown significantly since the introduction of metallocene catalytic polymerization in industrial applications. A zirconium dichloride complex, three intermediates, and methylaluminoxane were used as metallocene catalysts for the polymerization of ethylene to obtain the mPEs. The structures of the mPEs were characterized by 13C nuclear magnetic resonance (13C-NMR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), and dynamic rheology method. The results on the crystallization of the mPEs showed master curve features and indicated fractal topology of the long-chain branch. The conflicting result obtained from the 13C NMR and rheology is due to the long-chain fractal structure. The successive self-nucleation and annealing (SSA) was used to characterize the length of crystallizable methylene sequence length (MSL) methylene sequence. It was found that the lamellar thickness calculated via Thomson-Gibbs equation exhibits two scaling relationships with MSL related to the molecular weight of the polyethylene chain entanglements \(\left({M}_{\mathrm{e}}\right)\).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lai SY, Wilson JR, Knight GW, Stevens JC (1993) U. S. Patent 5272236.

  2. Schellenberg J (1997) Blends of high-density polyethylene with homogeneous long-chain branched polyethylenes. Adv Polym Technol 16:135–145

    Article  CAS  Google Scholar 

  3. Seguela R (2005) Critical review of the molecular topology of semicrystalline polymers: the origin and assessment of intercrystalline tie molecules and chain entanglements. J Polym Sci Part B Polym Phys 43:1729–1748

    Article  CAS  Google Scholar 

  4. Huang Y, Brown N (2010) Dependence of slow crack growth in polyethylene on butyl branch density: morphology and theory. J Polym Sci Part B Polym Phys 29:129–137

    Article  Google Scholar 

  5. Kwack TH, Han CD (1983) Rheology-processing-property relationships in tubular blown film extrusion. II. Low-pressure low-density polyethylene. J Appl Polym Sci 28:3419–3433

    Article  CAS  Google Scholar 

  6. Utracki LA, Schlund B (1987) Linear low density polyethylenes and their blends: part 3. Extensional flow of LLDPE’s. Polym Eng Sci 27:1002–1005

    Google Scholar 

  7. Prasad A, Shroff R, Rane S, Beaucage G (2001) Morphological study of HDPE blown films by SAXS, SEM and TEM: a relationship between the melt elasticity parameter and lamellae orientation. Polymer 42:3103–3113

    Article  CAS  Google Scholar 

  8. Bastiaansen CWM (1990) Influence of initial polymer concentration in solution and weight-average molecular weight on the drawing behavior of polyethylenes. J Polym Sci Part B Polym Phys 28:1475–1482

    Article  CAS  Google Scholar 

  9. Patel RM, Sehanobish K, Jain P, Chum SP, Knight GW (1996) Theoretical prediction of tie-chain concentration and its characterization using postyield response. J Appl Polym Sci 60:749–758

    Article  CAS  Google Scholar 

  10. Beerbaum H, Grellmann W (2000) The influence of morphology and structure on the crack growth of linear polyethylene. Eur Struct Integr Soc 27:163–174

    Article  CAS  Google Scholar 

  11. Jaccard R (1990) Fatigue crack propagation in high-density polyethylene. J Polym Sci Part A Polym Chem 29:1377–1390

    Google Scholar 

  12. Aguilar M, Vega JF, Sanz E, Martínez-Salazar J (2001) New aspects on the rheological behaviour of metallocene catalysed polyethylenes. Polymer 42:9713–9721

    Article  CAS  Google Scholar 

  13. Litvinov VM, Ries ME, Baughman TW, Henke A, Matloka PP (2013) Chain entanglements in polyethylene melts. Why is it studied again? Macromolecules 46:541–547

    Article  CAS  Google Scholar 

  14. Ramos J, Vega JF, Theodorou DN, Martinez-Salazar J (2008) Entanglement relaxation time in polyethylene: simulation versus experimental data. Macromolecules 41:2959–2962

    Article  CAS  Google Scholar 

  15. Richter D, Farago B, Butera R, Fetters LJ, Ewen BJM (1993) On the origins of entanglement constraints. Macromolecules 26:795–804

    Article  CAS  Google Scholar 

  16. Müller AJ, Hernández ZH, Arnal ML, Bulletin JJ (1997) Successive self-nucleation/annealing (SSA): a novel technique to study molecular segregation during crystallization. Polym Bull 39:465–472

    Article  Google Scholar 

  17. Müller AJ, Lorenzo AT, Arnal ML (2009) Recent advances and applications of “successive self-nucleation and annealing” (SSA) high speed thermal fractionation. Macromol Symp 277:207–214

    Article  CAS  Google Scholar 

  18. Lorenzo AT, Arnal ML, Sánchez JJ, Müller AJ (2006) Effect of annealing time on the self-nucleation behavior of semicrystalline polymers. J Polym Sci Part B Polym Phys 44:1738–1750

    Article  CAS  Google Scholar 

  19. Nicolás J, Villarreal N, Gobernado-Mitre I, Merino JC, Pastor JM (2003) Thermal properties and SSA fractionation of metallocene ethylene-oct-1-ene copolymers with high comonomer content cross-linked by dicumyl peroxide or β-radiation. Macromol Chem Phys 204:2212–2221

    Article  CAS  Google Scholar 

  20. Czaja K, Białek M, Utrata A (2004) Copolymerization of ethylene with 1-hexene over metallocene catalyst supported on complex of magnesium chloride with tetrahydrofuran. J Polym Sci Part A Polym Chem 42:2512–2519

    Article  CAS  Google Scholar 

  21. Marquez L, Rivero I, Müller AJ (1999) Application of the SSA calorimetric technique to characterize LLDPE grafted with diethyl maleate. Macromol Chem Phys 200:330–337

    Article  CAS  Google Scholar 

  22. Zhang M, Lynch DT, Wanke SE (2000) Characterization of commercial linear low-density polyethylene by TREF-DSC and TREF-SEC cross-fractionation. J Appl Polym Sci 75:960–967

    Article  CAS  Google Scholar 

  23. Zhang M, Lynch DT, Wanke SE (2001) Effect of molecular structure distribution on melting and crystallization behavior of 1-butene/ethylene copolymers. Polymer 42:3067–3075

    Article  CAS  Google Scholar 

  24. Spencer M, Parent JS, Whitney RA (2003) Composition distribution in poly(ethylene-graft-vinyltrimethoxysilane). Polymer 44:2015–2023

    Article  CAS  Google Scholar 

  25. Arnal ML, Caizales E, Müller AJ (2002) Thermal and morphological evaluation of very low density polyethylene/high density polyethylene blends. Polym Eng Sci 42:2048–2063

    Article  CAS  Google Scholar 

  26. Kontopoulou M, Wang W, Gopakumar TG, Cheung C (2003) Effect of composition and comonomer type on the rheology, morphology and properties of ethylene-α-olefin copolymer/polypropylene blends. Polymer 44:7495–7504

    Article  CAS  Google Scholar 

  27. Randall J (1989) A review of high-resolution liquid carbon-13 nuclear magnetic resonance characterizations of ethylene-based polymer. J Macromol Sci Part C 29:201–317

    Article  Google Scholar 

  28. Zhou Z, Baugh D, Fontaine PP, He Y, Shi Z, Mukhopadhyay S, Cong R, Winniford B, Miller M (2017) Long-chain branch measurement in substantially linear ethylene polymers by 13C NMR with halogenated naphthalenes as solvents. Macromolecules 50:7959–7966

    Article  CAS  Google Scholar 

  29. Tian J, Yu W, Zhou C (2006) The preparation and rheology characterization of long chain branching polypropylene. Polymer 47:7962–7969

    Article  CAS  Google Scholar 

  30. García-Franco CA, Srinivas S, Lohse DJ, Brant P (2001) Similarities between gelation and long chain branching viscoelastic behavior. Macromolecules 34:3115–3117

    Article  CAS  Google Scholar 

  31. Robertson CG, García-Franco CA, Srinivas S (2004) Extent of branching from linear viscoelasticity of long hain-branched polymers. J Polym Sci Part B Polym Phys 42:1671–1684

    Article  CAS  Google Scholar 

  32. Gottfried AC, Brookhart M (2003) Living and block copolymerization of ethylene and α-olefins using palladium(II)α-diimine catalysts. Macromolecules 36:3085–3100

    Article  CAS  Google Scholar 

  33. Zhou Z, Anklin C, Cong R, Qiu X, Kuemmerle R (2021) Long-chain branch detection and quantification in ethylene–hexene LLDPE with 13C NMR. Macromolecules 54:757–762

    Article  CAS  Google Scholar 

  34. Liu W, Ray DG, Rinaldi PL (1999) Resolution of signals from long-chain branching in polyethylene by 13C NMR at 188.6 MHz. Macromolecules 32:3817–3819

    Article  CAS  Google Scholar 

  35. ASTM (2016) F2625 - 10 standard test method for measurement of enthalpy of fusion, percent crystallinity, and melting point of ultra-high-molecular weight polyethylene by means of differential scanning calorimetry. ASTM Stand. i 7–10

  36. Nojima S, Ito K, Ikeda H (2007) Composition dependence of crystallized lamellar morphology formed in crystalline-crystalline diblock copolymers. Polymer 48:3607–3611

    Article  CAS  Google Scholar 

  37. Sun X, Shen G, Shen H, Xie B, Yang W, Yang M (2013) Co-crystallization of blends of high-density polyethylene with linear low-density polyethylene: an investigation with successive self-nucleation and annealing (SSA) technique. J Macromol Sci Part B Phys 52:1372–1387

    Article  CAS  Google Scholar 

  38. Cui W, Bian Y, Zeng H, Zhang X, Zhang Y, Weng X, Xin S, Jin Z (2020) Structural and tribological characteristics of ultra-low-wear polyethylene as artificial joint materials. J Mech Behav Biomed Mater 104:103629

  39. Baltá-Calleja, Vonk CG (1989) X-ray scattering of synthetic polymers. Elsevier.

  40. Bassett DC, Block S, Piermarini GJ (1974) A high-pressure phase of polyethylene and chain-extended growth. J Appl Phys 45:4146–4150

    Article  CAS  Google Scholar 

  41. Avrami M (1939) Kinetics of phase change. I General theory J Chem Phys 7:1103–1112

    CAS  Google Scholar 

  42. López-Barrón CR, Hagadorn JR, Throckmorton JA (2020) Isothermal crystallization kinetics of α-olefin molecular bottlebrushes. Macromolecules 53:7439–7449

    Article  CAS  Google Scholar 

  43. Jenkins MJ, Harrison KL (2006) The effect of molecular weight on the crystallization kinetics of polycaprolactone. Polym Adv Technol 17:474–478

    Article  CAS  Google Scholar 

  44. Ono R, Atarashi H, Yamazaki S, Kimura K (2020) Molecular weight dependence of the growth rate of spherulite of cyclic poly(ε-caprolactone) polymerized by ring expansion reaction. Polymer 194:122403

  45. Cameron C, Fawcett AH, Hetherington CR, Mee RAW, McBride FV (2000) Step growth of two flexible ABf monomers: the self-return of random branching walks eventually frustrates fractal formation. Macromolecules 33:6551–6558

    Article  CAS  Google Scholar 

  46. Zimm BH, Stockmayer WH (1949) The dimensions of chain molecules containing branches and rings. J Chem Phys 17:1301–1314

    Article  CAS  Google Scholar 

  47. Lubensky TC, Isaacson J (1979) Statistics of lattice animals and dilute branched polymers. Phys Rev A 20:2130–2146

    Article  CAS  Google Scholar 

  48. Pérez-Camargo RA, d’Arcy R, Iturrospe A, Arbe A, Tirelli N, Müller AJ (2019) Influence of chain primary structure and topology (branching) on crystallization and thermal properties: the case of polysulfides. Macromolecules 52:2093–2104

    Article  CAS  Google Scholar 

  49. Müller AJ, Arnal ML (2005) Thermal fractionation of polymers. Prog Polym Sci 30:559–603

    Article  CAS  Google Scholar 

  50. Vega J, Aguilar M, Peón J, Pastor D, Martínez-Salazar J (2002) Effect of long chain branching on linear-viscoelastic melt properties of polyolefins. E-Polymers 2:1–35

    Article  Google Scholar 

  51. Wood-Adams PM, Dealy JM, Degroot AW, Redwine OD (2000) Effect of molecular structure on the linear viscoelastic behavior of polyethylene. Macromolecules 33:7489–7499

    Article  CAS  Google Scholar 

  52. Kulkarni AS, Beaucage G (2006) Quantification of branching in disordered materials. J Polym Sci Part B Polym Phys 44:1395–1405

    Article  CAS  Google Scholar 

  53. Mandelkern L (2002) Crystallization of polymers: equilibrium concepts, vol 1. Cambridge University Press, Cambridge

    Google Scholar 

  54. Keating M, Lee IH, Wong CS (1996) Thermal fractionation of ethylene polymers in packaging applications. Thermochim Acta 284:47–56

    Article  CAS  Google Scholar 

  55. Arnal ML, Balsamo V, Ronca G, Sánchez A, Müller AJ, Cañizales E, Urbina de Navarro C (2000) Applications of successive self-nucleation and annealing (SSA) to polymer characterization. J Therm Anal Calorim 59:451–470

    Article  CAS  Google Scholar 

  56. Virkkunen V, Laari P, Pitkänen P, Sundholm F (2004) Tacticity distribution of isotactic polypropylene prepared with heterogeneous Ziegler-Natta catalyst. 2. Application and analysis of SSA data for polypropylene. Polymer 45:4623–4631

    Article  CAS  Google Scholar 

  57. Kong J, Fan X, Xie Y, Qiao W (2004) Study on molecular chain heterogeneity of linear low-density polyethylene by cross-fractionation of temperature rising elution fractionation and successive self-nucleation/annealing thermal fractionation. J Appl Polym Sci 94:1710–1718

    Article  CAS  Google Scholar 

  58. Hill MJ, Barham PJ, Keller A, Rosney CCA (1991) Phase segregation in melts of blends of linear and branched polyethylene. Polymer 32:1384–1393

    Article  CAS  Google Scholar 

  59. Chen F, Shanks RA, Amarasinghe G (2004) Molecular distribution analysis of melt-crystallized ethylene copolymers. Polym Int 53:1795–1805

    Article  CAS  Google Scholar 

  60. Ramachandran R, Beaucage G, Rai DK, Lohse DJ, Sun T, Tsou AH, Norman A, Hadjichristidis N (2012) Quantification of branching in model three-arm star polyethylene. Macromolecules 45:1056–1061

    Article  CAS  Google Scholar 

Download references

Funding

This work is financially supported by the National Natural Science Foundation of China (51573131, 51673147).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinle Li or Shichun Jiang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2509 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Li, X., Li, J. et al. Crystallization behavior and structure of metallocene polyethylene with long-chain branch. Colloid Polym Sci 300, 521–530 (2022). https://doi.org/10.1007/s00396-021-04925-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04925-3

Keywords

Navigation