Skip to main content
Log in

Superhydrophobic polystyrene coating based on phase separation of raspberry structure particle

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this work, monodisperse positively charged polystyrene (PS) particles with a particle size of 900 nm were prepared by dispersion polymerization using methacryloxyethyltrimethyl ammonium chloride (DMC) as a cationic comonomer. The polystyrene/silica (PS/SiO2) composite microspheres with a raspberry structure are formed by electrostatic adsorption prepared using positively charged PS adsorbed negatively charged silicon dioxide (SiO2). A novel superhydrophobic coating was constructed by a dip-coating method. Then, the coating film was immersed in a solution of heptadecafluorodecyl trimethoxysilane in n-hexane (0.1 wt%) to carry out surface superhydrophobic modification. Finally, a superhydrophobic coating with 158° static contact angle and 3° sliding angle was obtained. In addition, by adding divinylbenzene (DVB) and changing the amount and size of SiO2, the effect of the roughness level and cross-linking structure of raspberry particles on the hydrophobic properties of the coating was studied.

Graphical abstract

Mechanism diagram of superhydrophobic coating prepared by PS/SiO2 composite particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Parkin IP, Palgrave RG (2005) J Mater Chem 15(17):1689–1695

    Article  CAS  Google Scholar 

  2. Roach P, Shirtcliffe NJ, Newton MI (2008) Soft Matter 4(2):224–240

    Article  PubMed  CAS  Google Scholar 

  3. Barkhudarov PM, Shah PB, Watkins EB (2008) Corros Sci 50:897–902

    Article  CAS  Google Scholar 

  4. Cui Z, Zhang F, Wang L (2010) Langmuir 26:179–182

    Article  PubMed  CAS  Google Scholar 

  5. Dong H, Ye P, Zhong M (2010) Langmuir 26:15567–15573

    Article  PubMed  CAS  Google Scholar 

  6. Jung S, Tiwari MK, Doan NV (2012) Nat Commun 3:1–8

    Google Scholar 

  7. Hejazi V, Sobolev K, Nosonovsky M (2013) Sci Rep 3:2194

    Article  PubMed  PubMed Central  Google Scholar 

  8. Liu K, Jiang L (2011) ACS Nano 5:6786–6790

    Article  PubMed  CAS  Google Scholar 

  9. Sanchez C, Arribart H, Guille MMG (2005) Nat Mater 4:277–288

    Article  PubMed  CAS  Google Scholar 

  10. Park YB, Im H, Im M (2011) J Mater Chem 21:633–636

    Article  CAS  Google Scholar 

  11. Gui X, Li H, Wang K (2011) Acta Mater 59:4798–4804

    Article  CAS  Google Scholar 

  12. Li B, Li L, Wu L (2014) ChemPlusChem 79:850–856

    Article  CAS  Google Scholar 

  13. Su C, Li Y, Dai Y (2016) Mater Lett 170:67–71

    Article  CAS  Google Scholar 

  14. Bormashenko E, Bormashenko Y (2011) Langmuir 3266–3270

  15. Song YY, Schmidt-Stein F, Berger S (2010) Small 6:1180–1184

    Article  PubMed  CAS  Google Scholar 

  16. Choi JH, Kim YM, Park YW (2009) Langmuir 25:7156–7160

    Article  PubMed  CAS  Google Scholar 

  17. Yohe ST, Colson YL, Grinstaff MW (2012) J Am Chem Soc 134:2016–2019

    Article  PubMed  CAS  Google Scholar 

  18. Gu SY, Wang ZM, Li JB (2010) Macromol Mater Eng 295:32–36

    Article  CAS  Google Scholar 

  19. Crick CR, Bear JC, Southern P (2013) J Mater Chem A 1:4336–4344

    Article  CAS  Google Scholar 

  20. Lakshmi R, Bharathidasan T, Basu BJ (2011) Appl Surf Sci 257:10421–10426

    Article  CAS  Google Scholar 

  21. Zhao Y, Xu Z, Wang X (2012) Langmuir 28:6328–6335

    Article  PubMed  CAS  Google Scholar 

  22. Yin L, Wang Y, Ding J (2012) Appl Surf Sci 258:4063–4068

    Article  CAS  Google Scholar 

  23. Erbil HY, Demirel AL, Avci Y, Mert O (2003) Science 299:1377–1380

    Article  PubMed  CAS  Google Scholar 

  24. Gengec NA, Cengiz U, Erbil HY (2016) Appl Surf Sci 383:33–41

    Article  CAS  Google Scholar 

  25. Cengiz U, Erbil HY (2014) Appl Surf Sci 292:591–597

    Article  CAS  Google Scholar 

  26. Shang Q, Wang M, Liu H (2013) Polym Compos 34:51–57

    Article  CAS  Google Scholar 

  27. Ming W, Wu D, Vanbenthem R (2005) Nano Lett 5:2298–2301

    Article  PubMed  CAS  Google Scholar 

  28. Torun I, Celik N, Hancer M (2018) Macromolecules 51:10011–10020

    Article  CAS  Google Scholar 

  29. Torun I, Onses MS (2017) Surf Coat Technol 319:301–308

    Article  CAS  Google Scholar 

  30. Barthlott W, Neinhuis C (1997) Planta 202:1–8

    Article  CAS  Google Scholar 

  31. Nishimoto S, Bhushan B (2013) Rsc Adv 3:671–690

    Article  CAS  Google Scholar 

  32. Boinovich LB (2013) Herald Russ Acad Sci 83:8–18

    Article  Google Scholar 

  33. Cheng YT, Rodak DE (2005) Appl Phys Lett 86:144101

  34. Cheng YT, Rodak DE, Angelopoulos A (2005) Appl Phys Lett 87:194112

  35. Zou H, Zhai S (2020) Polym Chem 11(20):3370–3392

    Article  CAS  Google Scholar 

  36. Matsumoto T, Okubo M, Shibao S (1976) Kobunshi Ronbunshu 33:575–583

    Article  CAS  Google Scholar 

  37. Tian L, Li X, Zhao P, Chen X, Ali Z (2015) Macromolecules 48:7592–7603

    Article  CAS  Google Scholar 

  38. Baba EM, Cansoy CE, Zayim EO (2016) Prog Org Coat 99:378–385

    Article  CAS  Google Scholar 

  39. Balmer JA, Armes SP, Fowler PW (2009) Langmuir 25:5339–5347

    Article  PubMed  CAS  Google Scholar 

  40. Zou H, Wang X (2017) Langmuir 33:1471–1477

    Article  PubMed  CAS  Google Scholar 

  41. Hsiue G-H, Kuo W-J, Huang Y-P (2000) Polymer 41:2813–2825

    Article  CAS  Google Scholar 

  42. Whyman G, Bormashenko E, Stein T (2008) Chem Phys Lett 450:355–359

    Article  CAS  Google Scholar 

  43. Cassie A, Baxter S (1994) Trans Faraday Soc 40:546–551

    Article  Google Scholar 

  44. Yang C, Tartaglino U, Persson B (2006) Phys Rev Lett 97:116103

  45. Nakanaga T, Ito F, Takeo H (1994) J Mol Spectrosc 165:88–96

    Article  CAS  Google Scholar 

  46. Berglin M, Wynne KJ, Gatenholm P (2003) J Colloid Interface Sci 257:383–391

    Article  PubMed  CAS  Google Scholar 

  47. Gu G, Dang H, Zhang Z (2006) Appl Phys A: Solids Surf 83:131–132

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support from the National Natural Scientific Foundation of China (No. 51903017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingyao Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Jin, H., Wu, D. et al. Superhydrophobic polystyrene coating based on phase separation of raspberry structure particle. Colloid Polym Sci 299, 1695–1702 (2021). https://doi.org/10.1007/s00396-021-04891-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04891-w

KEYWORDS:

Navigation