Skip to main content
Log in

Tunable safranine T release from LbL films of single/blend polyanions

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Loading and release behavior of a cationic dye, namely, safranine-T, through layer-by-layer (LbL) multilayered films of poly(diallyldimethylammonium chloride) (PDADMAC) and single/blend anionic polyelectrolytes (PEs), namely, poly(acrylic acid) (PAA), and poly(styrenesulfonate) (PSS), are described. The growths of PDADMAC/PSS-PAA multilayers and their safranine-T sorption behavior are monitored using the UV–Vis technique and discussed in terms of blend composition of anionic PEs and pH as well as their hydrophilicity and topography. The dye loading and desorption properties of the LbL films prepared from single/blend negatively charged PEs mainly depend on the interactions of PEs and safranine T. Strong interactions between PSS and safranine T result in a higher dye entrapping inside LbL films whereas either PAA-rich or single PAA-based LbL film exhibits larger dye desorption. A higher PSS content in the feed blend composition leads to an observable increase in θave and surface roughness whereas the use of PAA can yield a flatter surface due to its partially recomposed chain conformational structure at pH 11. Consequently, LbL multilayers obtained from single and blend polyanions can be considered as an encouraging material platform for the controlled release of charged species such as protein, drug, and dye. because of their tunable physicochemical and morphological properties as well as surface wettability.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Picart C, Caruso F, Voegel J-C (2015) Layer-by-layer films for biomedical applications. Wiley‐VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/9783527675869

  2. Richardson JJ, Cui J, Björnmalm M et al (2016) Innovation in layer-by-layer assembly. Chem Rev 116:14828–14867. https://doi.org/10.1021/acs.chemrev.6b00627

    Article  CAS  PubMed  Google Scholar 

  3. Zhao S, Caruso F, Dahne L et al (2019) The future of layer-by-layer assembly: a tribute to ACS nano associate Editor Helmuth Mohwald. ACS Nano 13:6151–6169. https://doi.org/10.1021/acsnano.9b03326

    Article  CAS  PubMed  Google Scholar 

  4. Decher G, Hong J-D (1991) Buildup of ultrathin multilayer films by a self‐assembly process, 1 consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces. https://doi.org/10.1002/masy.19910460145

  5. Decher G, Hong JD, Schmitt J (1991) Buildup of ultrathin multilayer films by a self-assembly process: II. consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210–211:831–835. https://doi.org/10.1002/bbpc.19910951122

    Article  Google Scholar 

  6. Decher G, Schlenoff JB (2012) Multilayer thin films: sequential assembly of nanocomposite materials, Second Edition, Second. Wiley-VCH, Germany

  7. Alkekhia D, Hammond PT, Shukla A (2020). Layer-by-layer biomaterials for drug delivery. https://doi.org/10.1146/annurev-bioeng-060418

    Article  Google Scholar 

  8. Ghiorghita CA, Bucatariu F, Dragan ES (2019) Influence of cross-linking in loading/release applications of polyelectrolyte multilayer assemblies. A review Mater Sci Eng C 105. https://doi.org/10.1016/j.msec.2019.110050

  9. Antipov AA, Sukhorukov GB, Donath E, Mo H (2001). Sustained release properties of polyelectrolyte multilayer capsules. https://doi.org/10.1021/jp002184

    Article  Google Scholar 

  10. Choi J, Rubner MF (2005) Influence of the degree of ionization on weak polyelectrolyte multilayer assembly. Macromolecules 38:116–124. https://doi.org/10.1021/ma048596o

    Article  CAS  Google Scholar 

  11. Petrov AI, Antipov AA, Sukhorukov GB (2003) Base-acid equilibria in polyelectrolyte systems: from weak polyelectrolytes to interpolyelectrolyte complexes and multilayered polyelectrolyte shells. Macromolecules 36:10079–10086. https://doi.org/10.1021/ma034516p

    Article  CAS  Google Scholar 

  12. Du P, Zhao X, Zeng J et al (2015) Layer-by-layer engineering fluorescent polyelectrolyte coated mesoporous silica nanoparticles as pH-sensitive nanocarriers for controlled release. Appl Surf Sci 345:90–98. https://doi.org/10.1016/j.apsusc.2015.03.151

    Article  CAS  Google Scholar 

  13. Xie M, Zhang F, Liu L et al (2018) Surface modification of graphene oxide nanosheets by protamine sulfate/sodium alginate for anti-cancer drug delivery application. Appl Surf Sci 440:853–860. https://doi.org/10.1016/j.apsusc.2018.01.175

    Article  CAS  Google Scholar 

  14. Kolasińska M, Warszyński P (2005) The effect of nature of polyions and treatment after deposition on wetting characteristics of polyelectrolyte multilayers. In: Applied Surface Science. Elsevier, pp 759–765. https://doi.org/10.1016/j.apsusc.2005.02.060

  15. Deligöz H, Tieke B (2014) QCM-D study of layer-by-layer assembly of polyelectrolyte blend films and their drug loading-release behavior. Colloids Surfaces A Physicochem Eng Asp 441:725–736. https://doi.org/10.1016/j.colsurfa.2013.10.033

    Article  CAS  Google Scholar 

  16. Crespilho FN, Zucolotto V, Brett CMA et al (2006) Enhanced charge transport and incorporation of redox mediators in layer-by-layer films containing PAMAM-encapsulated gold nanoparticles. J Phys Chem B 110:17478–17483. https://doi.org/10.1021/jp062098v

    Article  CAS  PubMed  Google Scholar 

  17. Seo J, Lutkenhaus JL, Kim J et al (2008) Effect of the layer-by-layer (LbL) deposition method on the surface morphology and wetting behavior of hydrophobically modified PEO and PAA LbL films. Langmuir 24:7995–8000. https://doi.org/10.1021/la800906x

    Article  CAS  PubMed  Google Scholar 

  18. Yu D, Dai L (2010) Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J Phys Chem Lett 1:467–470. https://doi.org/10.1021/jz9003137

    Article  CAS  Google Scholar 

  19. Zhang M, Yan Y, Gong K et al (2004) Electrostatic layer-by-layer assembled carbon nanotube multilayer film and ıts electrocatalytic activity for O 2 reduction. Langmuir 20:8781–8785. https://doi.org/10.1021/la048923l

    Article  CAS  PubMed  Google Scholar 

  20. Caruso F, Lichtenfeld H, Donath E, Möhwald H (1999) Investigation of electrostatic interactions in polyelectrolyte multilayer films: binding of anionic fluorescent probes to layers assembled onto colloids. Macromolecules 32:2317–2328. https://doi.org/10.1021/ma980674i

    Article  CAS  Google Scholar 

  21. Niu J, Shi F, Liu Z et al (2007) Reversible disulfide cross-linking in layer-by-layer films: preassembly enhanced loading and pH/reductant dually controllable release. Langmuir 23:6377–6384. https://doi.org/10.1021/la063670c

    Article  CAS  PubMed  Google Scholar 

  22. Volodkin D, Skirtach A, Möhwald H (2010) LbL films as reservoirs for bioactive molecules. Adv Polym Sci 240:135–161. https://doi.org/10.1007/12_2010_79

    Article  CAS  Google Scholar 

  23. Richardson JJ, Björnmalm M, Caruso F (2015) Technology-driven layer-by-layer assembly of nanofilms. Science (80-. ). 348. https://doi.org/10.1126/science.aaa2491.

  24. Bag E, Begik O, Yusan P, Erel-Goktepe I (2015) Hydrogen-bonded multilayers with controllable pH-induced disintegration kinetics for controlled release applications from surfaces. J Macromol Sci Part A Pure Appl Chem 52:286–298. https://doi.org/10.1080/10601325.2015.1007274

    Article  CAS  Google Scholar 

  25. Correa S, Dreaden EC, Gu L, Hammond PT (2016) Engineering nanolayered particles for modular drug delivery. J Control Release 240:364–386. https://doi.org/10.1016/j.jconrel.2016.01.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhou J, Pishko MV, Lutkenhaus JL (2014) Thermoresponsive layer-by-layer assemblies for nanoparticle-based drug delivery. Langmuir 30:5903–5910. https://doi.org/10.1021/la501047m

    Article  CAS  PubMed  Google Scholar 

  27. Delcea M, Möhwald H, Skirtach AG (2011) Stimuli-responsive LbL capsules and nanoshells for drug delivery. Adv Drug Deliv Rev 63:730–747. https://doi.org/10.1016/j.addr.2011.03.010

    Article  CAS  PubMed  Google Scholar 

  28. Kurapati R, Groth TW, Raichur AM (2019) Recent developments in layer-by-layer technique for drug delivery applications. ACS Appl. Bio Mater. https://doi.org/10.1021/acsabm.9b00703

  29. Wood KC, Boedicker JQ, Lynn DM, Hammond PT (2005) Tunable drug release from hydrolytically degradable layer-by-layer thin films. Langmuir 21:1603–1609. https://doi.org/10.1021/la0476480

    Article  CAS  PubMed  Google Scholar 

  30. Iost RM, Crespilho FN (2012) Layer-by-layer self-assembly and electrochemistry: applications in biosensing and bioelectronics. Biosens Bioelectron 31:1–10. https://doi.org/10.1016/j.bios.2011.10.040

    Article  CAS  PubMed  Google Scholar 

  31. Yut A, Caruso F (2003) Thin films of polyelectrolyte-encapsulated catalase microcrystals for biosensing. Anal Chem 75:3031–3037. https://doi.org/10.1021/ac0340049

    Article  CAS  Google Scholar 

  32. Deshmukh PK, Ramani KP, Singh SS et al (2013) Stimuli-sensitive layer-by-layer (LbL) self-assembly systems: targeting and biosensory applications. J Control Release 166:294–306. https://doi.org/10.1016/j.jconrel.2012.12.033

    Article  CAS  PubMed  Google Scholar 

  33. Mariani S, Robbiano V, Strambini LM et al (2018) Layer-by-layer biofunctionalization of nanostructured porous silicon for high-sensitivity and high-selectivity label-free affinity biosensing. Nat Commun 9. https://doi.org/10.1038/s41467-018-07723-8

  34. Hu M, Mi B (2013) Enabling graphene oxide nanosheets as water separation membranes. Environ Sci Technol 47:3715–3723. https://doi.org/10.1021/es400571g

    Article  CAS  PubMed  Google Scholar 

  35. Liu S, Montazami R, Liu Y et al (2010) Influence of the conductor network composites on the electromechanical performance of ionic polymer conductor network composite actuators. Sensors Actuators, A Phys 157:267–275. https://doi.org/10.1016/j.sna.2009.11.022

    Article  CAS  Google Scholar 

  36. Liu S, Montazami R, Liu Y et al (2009) Layer-by-layer self-assembled conductor network composites in ionic polymer metal composite actuators with high strain response. Appl Phys Lett 95. https://doi.org/10.1063/1.3179554

  37. Andre RS, Shimizu FM, Miyazaki CM et al (2017) Hybrid layer-by-layer (LbL) films of polyaniline, graphene oxide and zinc oxide to detect ammonia. Sensors Actuators, B Chem 238:795–801. https://doi.org/10.1016/j.snb.2016.07.099

    Article  CAS  Google Scholar 

  38. Shen Y, Liu J, Jiang J et al (2003) Fabrication of a metalloporphyrin-polyoxometalate hybrid film by a layer-by-layer method and ıts catalysis for hydrogen evolution and dioxygen reduction. J Phys Chem B 107:9744–9748. https://doi.org/10.1021/jp035274y

    Article  CAS  Google Scholar 

  39. Ferreira M, Fiorito PA, Oliveira ON, Córdoba De Torresi SI (2004) Enzyme-mediated amperometric biosensors prepared with the Layer-by-Layer (LbL) adsorption technique. Biosens Bioelectron 19:1611–1615. https://doi.org/10.1016/j.bios.2003.12.025

    Article  CAS  PubMed  Google Scholar 

  40. Lin HJ, Li T, Huang MH et al (2019) Modulating unidirectional charge transfer via in situ etching-accompanied layer-by-layer self-assembly toward multifarious photoredox catalysis. J Phys Chem C 123:28066–28080. https://doi.org/10.1021/acs.jpcc.9b08738

    Article  CAS  Google Scholar 

  41. Shin SR, Aghaei-Ghareh-Bolagh B, Gao X et al (2014) Layer-by-layer assembly of 3D tissue constructs with functionalized graphene. Adv Funct Mater 24:6136–6144. https://doi.org/10.1002/adfm.201401300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim K, Ryu JH, Lee DY, Lee H (2013) Bio-inspired catechol conjugation converts water-insoluble chitosan into a highly water-soluble, adhesive chitosan derivative for hydrogels and LbL assembly. Biomater Sci 1:783–790. https://doi.org/10.1039/c3bm00004d

    Article  CAS  PubMed  Google Scholar 

  43. Tang Z, Wang Y, Podsiadlo P, Kotov NA (2006) Biomedical applications of layer-by-layer assembly: From biomimetics to tissue engineering. Adv Mater 18:3203–3224. https://doi.org/10.1002/adma.200600113

    Article  Google Scholar 

  44. Min J, Choi KY, Dreaden EC et al (2016) Designer dual therapy nanolayered ımplant coatings eradicate biofilms and accelerate bone tissue repair. ACS Nano 10:4441–4450. https://doi.org/10.1021/acsnano.6b00087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cheng G, Yin C, Tu H et al (2019) Controlled co-delivery of growth factors through layer-by-layer assembly of core shell nanofibers for ımproving bone regeneration. ACS Nano 13:6372–6382. https://doi.org/10.1021/acsnano.8b06032

    Article  CAS  PubMed  Google Scholar 

  46. Ma W, Zhang Y, Li F et al (2019) Layer-by-layer assembly and electrochemical study of Alizarin Red S-based thin films. Polymers (Basel) 11. https://doi.org/10.3390/polym11010165

  47. Jiang S, Chen X, Liu M (2004) The pH stimulated reversible loading and release of a cationic dye in a layer-by-layer assembled DNA/PAH film. J Colloid Interface Sci 277:396–403. https://doi.org/10.1016/j.jcis.2004.04.008

    Article  CAS  PubMed  Google Scholar 

  48. Şenel M, Ebru Koç F (2020) Controlled release of methylene blue from layer-by-layer assembled chitosan/polyacrylic acid. Int J Polym Mater Polym Biomater 69:258–262. https://doi.org/10.1080/00914037.2018.1563082

    Article  CAS  Google Scholar 

  49. Wang B, Gao C, Liu L (2005) Loading and release behaviors of compressed polyelectrolyte multilayers for small dye molecules. J Phys Chem B 109:4887–4892. https://doi.org/10.1021/jp0450282

    Article  CAS  PubMed  Google Scholar 

  50. Schneider G, Decher G, Nerambourg N et al (2006) Distance-dependent fluorescence quenching on gold nanoparticles ensheathed with layer-by-layer assembled polyelectrolytes. Nano Lett 6:530–536. https://doi.org/10.1021/nl052441s

    Article  CAS  PubMed  Google Scholar 

  51. Ghosh I, Das B, Nath RK et al (2016) Spectroscopic characterization of Niagara blue dye in the restricted geometry of layer-by-layer self-assembled films. Surf Rev Lett 23. https://doi.org/10.1142/S0218625X16500566

  52. Nath J, Deb S, Bhattacharjee D, Nath RK (2011) Formation and characterization of anionic dye-polycation molecular films by layer-by-layer adsorption process. Mol Cryst Liq Cryst 548:96–106. https://doi.org/10.1080/15421406.2011.590371

    Article  CAS  Google Scholar 

  53. Ding C, Xu S, Lin J et al (2012) Controlled loading and release of methylene blue for hydrogen-bonded LbL poly(vinyl pyrrolidone)/poly (acrylic acid) film. J Polym Res 19. https://doi.org/10.1007/s10965-011-9817-x

  54. Ding C, Xu S, Wang J et al (2012) Controlled loading and release of methylene blue in layer-by-layer assembled polyelectrolyte films. Mater Sci Eng C 32:670–673. https://doi.org/10.1016/j.msec.2012.01.005

    Article  CAS  Google Scholar 

  55. Gu R, Yuan X, Wu R et al (2014) Layer-by-layer assembled hydrogel nanocomposite film with a high loading capacity. J Appl Polym Sci 131. https://doi.org/10.1002/app.39352

  56. Tedeschi C, Caruso F, Möhwald H, Kirstein S (2000) Adsorption and desorption behavior of an anionic pyrene chromophore in sequentially deposited polyelectrolyte-dye thin films. J Am Chem Soc 122:5841–5848. https://doi.org/10.1021/ja994029i

    Article  CAS  Google Scholar 

  57. Vidyasagar A, Sung C, Losensky K, Lutkenhaus JL (2012) PH-dependent thermal transitions in hydrated layer-by-layer assemblies containing weak polyelectrolytes. Macromolecules 45:9169–9176. https://doi.org/10.1021/ma3020454

    Article  CAS  Google Scholar 

  58. Lundin M, Solaqa F, Thormann E et al (2011) Layer-by-layer assemblies of chitosan and heparin: Effect of solution ionic strength and pH. Langmuir 27:7537–7548. https://doi.org/10.1021/la200441u

    Article  CAS  PubMed  Google Scholar 

  59. Vidyasagar A, Sung C, Gamble R, Lutkenhaus JL (2012) Thermal transitions in dry and hydrated layer-by-layer assemblies exhibiting linear and exponential growth. ACS Nano 6:6174–6184. https://doi.org/10.1021/nn301526b

    Article  CAS  PubMed  Google Scholar 

  60. Sung C, Vidyasagar A, Hearn K, Lutkenhaus JL (2012) Effect of thickness on the thermal properties of hydrogen-bonded LbL assemblies. Langmuir 28:8100–8109. https://doi.org/10.1021/la301300h

    Article  CAS  PubMed  Google Scholar 

  61. Dreaden EC, Morton SW, Shopsowitz KE et al (2014) Bimodal tumor-targeting from microenvironment responsive hyaluronan layer-by-layer (LbL) nanoparticles. ACS Nano 8:8374–8382. https://doi.org/10.1021/nn502861t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ding C, Xu S, Wang J et al (2012) Controlled loading and release of methylene blue from LbL polyurethane/poly(acrylic acid) film. Polym Adv Technol 23:1283–1286. https://doi.org/10.1002/pat.2044

    Article  CAS  Google Scholar 

  63. Yılmaz Aykut D, Yolaçan Ö, Deligöz H (2020) pH stimuli drug loading/release platforms from LbL single/blend films: QCM-D and in-vitro studies. Colloids Surfaces A Physicochem Eng Asp 602:125113. https://doi.org/10.1016/j.colsurfa.2020.125113

    Article  CAS  Google Scholar 

  64. Ergün A, Tümer EH, Cengiz HY, Deligöz H (2020) Monitoring the salt stability of layer-by-layer self-assembled films from polyelectrolyte blends by quartz crystal microbalance-dissipation and their ıon separation performances. Polym Eng Sci. https://doi.org/10.1002/pen.25356

    Article  Google Scholar 

  65. Arslan M, Dönmez G, Ergün A et al (2020) Preparation, characterization, and separation performances of novel surface modified LbL composite membranes from polyelectrolyte blends and MWCNT. Polym Eng Sci 60:341–351. https://doi.org/10.1002/pen.25289

    Article  CAS  Google Scholar 

  66. Deniz M, Deligöz H (2019) Flexible self-assembled polyelectrolyte thin films based on conjugated polymer: quartz cristal microbalance dissipation (QCM-D) and cyclic voltammetry analysis. Colloids Surfaces A Physicochem Eng Asp 563:206–216. https://doi.org/10.1016/j.colsurfa.2018.12.014

    Article  CAS  Google Scholar 

  67. Quinn A, Tjipto E, Yu A et al (2007) Polyelectrolyte blend multilayer films: surface morphology, wettability, and protein adsorption characteristics. Langmuir 23:4944–4949. https://doi.org/10.1021/la0634746

    Article  CAS  PubMed  Google Scholar 

  68. Liu L, Pan Y, Zhao Y et al (2020) Self-assembly of phosphonate-metal complex for superhydrophobic and durable flame-retardant polyester–cotton fabrics. Cellulose 27:6011–6025. https://doi.org/10.1007/s10570-020-03148-z

    Article  CAS  Google Scholar 

  69. Ospanova A, Savdenbekova B, Kubasheva Z et al (2020) Several features of producing polyelectrolyte-based nanolayers by the multi-layer assembly. Mater Today Proc 31:584–587. https://doi.org/10.1016/j.matpr.2020.07.070

    Article  CAS  Google Scholar 

  70. Ramos JJI, Llarena I, Moya SE (2011) Unusual collapse of highly hydrated polyelectrolyte multilayers with the ionic strength. J Polym Sci Part A Polym Chem 49:2346–2352. https://doi.org/10.1002/pola.24662

    Article  CAS  Google Scholar 

  71. Han L, Mao Z, Wuliyasu H et al (2012) Modulating the structure and properties of poly(sodium 4-styrenesulfonate)/ poly(diallyldimethylammonium chloride) multilayers with concentrated salt solutions. Langmuir 28:193–199. https://doi.org/10.1021/la2040533

    Article  CAS  PubMed  Google Scholar 

  72. Wang Y, Lin C, Wang Z et al (2019) Magnetic hollow poly(cyclotriphosphazene-co-4,4′-sulfonyldiphenol)-Fe3O4 hybrid nanocapsules for adsorbing Safranine T and catalytic oxidation of 3,3′,5,5′-tetramethylbenzidine. J Colloid Interface Sci 556:278–291. https://doi.org/10.1016/j.jcis.2019.08.073

    Article  CAS  PubMed  Google Scholar 

  73. Gopalakrishnan A, Mathew ML, Chandran J et al (2015) Sustainable polyelectrolyte multilayer surfaces: possible matrix for salt/dye separation. ACS Appl Mater Interfaces 7:3699–3707. https://doi.org/10.1021/am508298d

    Article  CAS  PubMed  Google Scholar 

  74. Iturri Ramos JJ, Stahl S, Richter RP, Moya SE (2010) Water content and buildup of poly(diallyldimethylammonium chloride)/poly(sodium 4-styrenesulfonate) and poly(allylamine hydrochloride)/poly(sodium 4-styrenesulfonate) polyelectrolyte multilayers studied by an in situ combination of a quartz crystal microb. Macromolecules 43:9063–9070. https://doi.org/10.1021/ma1015984

    Article  CAS  Google Scholar 

  75. Alonso T, Irigoyen J, Iturri JJ et al (2013) Study of the multilayer assembly and complex formation of poly(diallyldimethylammonium chloride) (PDADMAC) and poly(acrylic acid) (PAA) as a function of pH. Soft Matter 9:1920–1928. https://doi.org/10.1039/c2sm26884a

    Article  CAS  Google Scholar 

  76. Quinn A, Such GK, Quinn JF, Caruso F (2008) Polyelectrolyte blend multilayers: a versatile route to engineering interfaces and films. Adv Funct Mater 18:17–26. https://doi.org/10.1002/adfm.200700472

    Article  CAS  Google Scholar 

  77. Slavgorodska M, Kyrychenko A (2020) Structure and dynamics of pyrene-labeled poly(Acrylic acid): Molecular dynamics simulation study. Chem Chem Technol 14:76–80. https://doi.org/10.23939/chcht14.01.076

Download references

Funding

The Scientific and Technological Research Council of Turkey (Grant 112M290) and Scientific Research Projects Coordination Unit of Istanbul University—Cerrahpaşa (Grant numbers 37682) provided the funding for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huseyin Deligoz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yılmaz Aykut, D., Yolaçan, Ö., Kaşgöz, H. et al. Tunable safranine T release from LbL films of single/blend polyanions. Colloid Polym Sci 299, 1605–1616 (2021). https://doi.org/10.1007/s00396-021-04883-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04883-w

Keywords

Navigation