Skip to main content
Log in

Homogeneous rhodium ion catalyst encapsulated by benzoyl-terminated dendrimer: high hydrogenation and separation capabilities for diene copolymers

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Benzoyl chloride has been employed to react with primary amino groups on the surface of the second generation of poly(propylene imine) (G2-PPI) dendrimer to synthesize benzoyl-terminated dendrimer (G2-B) by a nucleophilic substitution reaction. A novel homogeneous catalyst of G2-B(Rh3+) has been prepared by complexing RhCl3·3H2O with G2-B, and further applied to the catalytic hydrogenation of nitrile butadiene rubber (NBR) and styrene butadiene rubber (SBR). The hydrogenation degrees (HDs) of HNBR and HSBR catalyzed by G2-B(Rh3+) are 99.2 and 92.1% respectively. The contents of Rh residue in the HNBR and HSBR catalyzed by G2-B(Rh3+) are only 41 and 31 ppm, respectively, which are respectively decreased by 84.5 wt% and 83.2 wt%, respectively, compared to those catalyzed by RhCl(PPh3)3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang P, Zhang HW, Wang SH, Lei XQ, Yang JT, Li ZM, Zhu HB, Bao XJ, Yuan P (2020) Effect of support morphology on the activity and reusability of Pd/SiO2 for NBR hydrogenation. J Mater Sci 55:12876–12883

    Article  CAS  Google Scholar 

  2. Chen J, Wu Z, Liu H, Bao X, Yuan P (2019) A surface co-functionalized silica supported palladium catalyst for selective hydrogenation of NBR with enhanced catalytic activity and recycling performance. Ind Eng Chem Res 58:11821–11830

    Article  CAS  Google Scholar 

  3. Cao P, Ni YQ, Zou R, Zhang LQ, Yue DM (2015) Enhanced catalytic properties of rhodium nanoparticles deposited on chemically modified SiO2 for hydrogenation of nitrile butadiene rubber. RSC Adv 5:3417–3424

    Article  CAS  Google Scholar 

  4. Cao P, Huang CY, Zhang LQ, Yue DM (2015) One-step fabrication of RGO/HNBR composites via selective hydrogenation of NBR with graphene-based catalyst. RSC Adv 5:41098–41102

    Article  CAS  Google Scholar 

  5. Zou R, Li C, Zhang LQ (2016) Selective hydrogenation of nitrile butadiene rubber (NBR) with rhodium nanoparticles supported on carbon nanotubes at room temperature. Catal Commun 81:4–9

    Article  CAS  Google Scholar 

  6. Luo ZH, Feng M, Lu H, Kong XX, Cao GP (2019) Nitrile butadiene rubber hydrogenation over a monolithic Pd/CNTs@Nickel foam catalysts: tunable CNTs morphology effect on catalytic performance. Ind Eng Chem Res 58:1812–1822

    Article  CAS  Google Scholar 

  7. Collis AEC, Horvath IT (2011) Heterogenization of homogeneous catalytic systems. Catal Sci Technol 1:912–919

    Article  CAS  Google Scholar 

  8. Yang LJ, Pan QM, Rempel GL (2013) Development of a green separation technique for recovery of Wilkinson’s catalysts from bulk hydrogenated nitrile butadiene rubber. Catal Today 207:153

    Article  CAS  Google Scholar 

  9. Liu Y, Kim H, Pan QM, Rempel GL (2013) Hydrogenation of acrylonitrile–butadiene copolymer latex using water-soluble rhodium catalysts. Catal Sci Technol 3:2689–2698

    Article  CAS  Google Scholar 

  10. Pan QM, Rempel GL (2004) Hydrogenation of styrene-butadiene rubber catalyzed by Ru (CH=CHPh)Cl(CO)(PCy3)2. Macromol Rapid Commun 25:843–847

    Article  CAS  Google Scholar 

  11. Mudalige DC, Rempel GL (1997) Aqueous-phase hydrogenation of polybutadiene, styrene-butadiene and nitrile-butadiene polymer emulsions catalyzed by water-soluble rhodium complexes. J Mol Catal A-Chem 123:15–20

    Article  Google Scholar 

  12. Liu Y, Wei ZL, Pan QM (2013) Hydrogenation of acrylonitrile-butadiene rubber latex using in situ synthesized RhCl(PPh3)3 catalyst. Appl Catal A: Gen 457:62

    Article  CAS  Google Scholar 

  13. Wang H, Pan QM, Rempel GL (2012) Diene-based polymer nanoparticles: preparation and direct catalytic latex hydrogenation. J Polym Sci Part A: Polym Chem 50:2098

  14. Wang H, Yang LJ, Scott S, Pan QM, Rempel GL (2012) Organic solvent-free catalytic hydrogenation of diene-based polymer nanoparticles in latex form. Part II. Kinetic analysis and mechanistic study. J Polym Sci Part A: Polym Chem 50:4612

  15. Zhou W, Peng XH (2019) Enhanced separation capability of rhodium ionic catalyst encapsulated by propionation-terminated poly(propylene imine) dendrimer. Macromol Res 27:238–242

    Article  CAS  Google Scholar 

  16. Najafi F, Ghasemian N, Safari M, Salami-Kalajahi M (2020) Poly (propylene imine) dendrimer as reducing agent for chloroauric acid to fabricate and stabilize gold nanoparticles. J Phys Chem Solids 148:109682

  17. Far HS, Hasanzadeh M, Nashtaei MS, Rabbani M, Moghadam BH (2020) PPI-dendrimer-functionalized magnetic metal-organic framework (Fe3O4@MOF@PPI) with high adsorption capacity for sustainable wastewater treatment. ACS Appl Mater Inter 12:25294–25303

    Article  CAS  Google Scholar 

  18. Cesari C, Conti R, Cingolani A, Zanotti V, Mazzoni R (2020) Synthesis and reactivity of poly(propyleneimine) dendrimers functionalized with cyclopentadienone n-heterocyclic-carbene ruthenium (0) complexes. Catalysts 10:264

    Article  CAS  Google Scholar 

  19. Zhou W, Peng XH (2016) Preparation of a novel homogeneous bimetallic Rhodium/Palladium ionic catalyst and its application for the catalytic hydrogenation of nitrile butadiene rubber. J Organomet Chem 823:76

    Article  CAS  Google Scholar 

  20. Zhou W, Peng XH (2016) Preparation and catalytic application of Rh3+/Ru3+ bimetallic catalyst stabilized by triolefinic macrocycle-terminated poly(propylene imine) dendrimer. Macromol Res 24:1024

    Article  CAS  Google Scholar 

  21. Malinga SP, Arotiba OA, Krause RW, Mapolie SF, Mamba BB (2012) Synthesis and characterisation of generation 2 and 3 poly(propylene imine) dendrimer capped NiFe nanoalloy. Mater Lett 68:324

    Article  CAS  Google Scholar 

  22. DuttaT AHB, Garg M, Balasubramanium P, Kabra M, Jain NK (2007) Poly (propyleneimine) dendrimer based nanocontainers for targeting of efavirenz to human monocytes/macrophages in vitro. J Drug Target 15:89

    Article  Google Scholar 

  23. Nazarpoor Z, Khivantsev K, Kyriakidou E, Kubicki C, Ma S, Fanson PT, Alexeev OS, Amiridis MD (2013) Dendrimer-mediated synthesis of supported rhodium nanoparticles with controlled size: effect of pH and dialysis. J Colloid Interface Sci 398:22

    Article  CAS  Google Scholar 

Download references

Funding

The authors were financially supported by the National Natural Science Foundation of China (Grants 51273071 and 52003304).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenwen Qu or Xiaohong Peng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Qu, W. & Peng, X. Homogeneous rhodium ion catalyst encapsulated by benzoyl-terminated dendrimer: high hydrogenation and separation capabilities for diene copolymers. Colloid Polym Sci 299, 1587–1593 (2021). https://doi.org/10.1007/s00396-021-04862-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04862-1

Keywords

Navigation