Skip to main content
Log in

An insight into the catalytic hydrogenation mechanism of modified dendrimer-loaded rhodium ionic catalyst for unsaturated copolymer

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A catalytic mechanism of ionic rhodium catalyst stabilized by macrcycles-modified dendrimer (G2-M(Rh3+)) for the hydrogenation of unsaturated copolymer was proposed. It was found that the co-catalyst of triphenylphosphine (PPh3) possessed significant influence on the catalytic hydrogenation activity of G2-M(Rh3+). An active specie of [Rh(PPh3)3]+ could be generated from a ligand exchange between G2-M(Rh3+) and PPh3 during the hydrogenation process, which could outstandingly improve the selective hydrogenation activity for unsaturated co-polymers. Totally different from other catalyst for hydrogenation, the active [Rh(PPh3)3]+ was reduced to Rh0 nanoparticles which could be further recaptured by the non-coordinated macrocycles in G2-M after hydrogenation. The Rh0 recapture could significantly reduce Rh residues in the hydrogenated co-polymers. This research can give an insight into the interaction of dendrimer-loaded Rh and the co-catalyst of PPh3 during hydrogenation processs.

The Rh0, genarated from the reduction of [Rh(PPh3)3]+, can be recaptured by the non-coordinated macrocycles in G2-M after the hydrogenation. Thus, the Rh residues of HNBR and HSBR catalyzed by G2-M(Rh3+) decreased 81.1 wt% and 82.1 wt% compared with those of Rh(PPh3)3Cl. The Rh0 nanoparticle possesses weak interaction with PPh3 to generate active catalytic species for the hydrogenation in NBR and SBR, which reduced the catalytic activity of the recycled catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liu Y, Kim H, Pan QM, Rempel GL (2013) Hydrogenation of acrylonitrile–butadiene copolymer latex using water-soluble rhodium catalysts. Catal. Sci. Technol. 3:2689–2698

    Article  CAS  Google Scholar 

  2. Wang H, Yang LJ, Rempel GL (2013) Homogeneous hydrogenation art of nitrile butadiene rubber: A review. Polym. Rev. 53:192–239

    Article  CAS  Google Scholar 

  3. De SRF, Rech V (2002) Dupont. Alternative synthesis of a dialkylimidazolium tetrafluoroborate Ionic liquid mixture and its use in poly(acrylonitrile-butadiene) hydrogenation. J. Adv. Synth. Catal. 344:153–155

    Article  Google Scholar 

  4. Pan QM, Rempel GL (2004) Hydrogenation of styrene-butadiene rubber catalyzed by Ru(CH=CHPh)Cl(CO)(PCy3)2. Macromol. Rapid Commun. 25:843–847

    Article  CAS  Google Scholar 

  5. Mudalige DC, Rempel GL (1997) Aqueous-phase hydrogenation of polybutadiene, styrene-butadiene and nitrile-butadiene polymer emulsions catalyzed by water-soluble rhodium complexes. J. Mol. Catal. A-Chem. 123:15–20

    Article  Google Scholar 

  6. Ou HM, Wang Y, Zhou W, Peng XH (2016) Kinetics investigation on the hydrogenation of acrylonitrile-butadiene rubber latex by using new catalytic reaction system. Catal. Commun. 84:183–187

    Article  CAS  Google Scholar 

  7. Zou R, Li C, Zhang LQ (2016) Selective hydrogenation of nitrile butadiene rubber (NBR) with rhodium nanoparticles supported on carbon nanotubes at room temperature. Catal. Commun. 81:4–9

    Article  CAS  Google Scholar 

  8. Cao P, Ni YQ, Zou R, Zhang LQ, Yue DM (2015) Enhanced catalytic properties of rhodium nanoparticles deposited on chemically modified SiO2 for hydrogenation of nitrile butadiene rubber. RSC Adv. 5:3417–3424

    Article  CAS  Google Scholar 

  9. Dong LB, Turgman-Cohen S, Roberts GW, Kiserow DJ (2010) Effect of Polymer size on heterogeneous catalytic polystyrene hydrogenation. Ind. Eng. Chem. Res. 49:11280–11286

    Article  CAS  Google Scholar 

  10. Parent JS, McManus NT, Rempel GL (1996) RhCl(PPh3)3 and RhH(PPh3)4 catalyzed hydrogenation of acrylonitrile−butadiene copolymers. Ind. Eng. Chem. Res. 35:4417–4423

    Article  CAS  Google Scholar 

  11. Cao P, Huang CY, Zhang LQ, Yue DM (2015) One-step fabrication of RGO/HNBR composites via selective hydrogenation of NBR with graphene-based catalyst. RSC Adv. 5:41098–41102

    Article  CAS  Google Scholar 

  12. Wang H, Pan QM, Rempel GL (2012) Diene-based polymer nanoparticles: Preparation and direct catalytic latex hydrogenation. J. Polym Sci., Part A: Polym. Chem. 50:2098–2110

    Article  CAS  Google Scholar 

  13. Wang H, Yang LJ, Scott S, Pan QM, Rempel GL (2012) Organic solvent-free catalytic hydrogenation of diene-ased polymer nanoparticles in latex form. Part II. Kinetic analysis and mechanistic study. J. Polym Sci., Part A. Polym. Chem. 50:4612–4627

    Article  CAS  Google Scholar 

  14. Mao TF, Rempel GL (1998) Catalytic hydrogenation of nitrile-butadiene copolymers by cationic rhodium complexes. J. Mol. Catal. A-Chem. 135:121–132

    Article  CAS  Google Scholar 

  15. Collis AEC, Horvath IT (2011) Heterogenization of homogeneous catalytic systems. Catal. Sci. Technol. 1:912–919

    Article  CAS  Google Scholar 

  16. Liu Y, Wu JL, Pan QM, Rempel GL (2012) Green and simple method for catalytic hydrogenation of diene-based polymers. Top Catal. 55:637–643

    Article  CAS  Google Scholar 

  17. Liu Y, Wei ZL, Pan QM (2013) Hydrogenation of acrylonitrile-butadiene rubber latex using in situ synthesized RhCl(PPh3)3 catalyst. Appl. Catal. A-Gen. 457:62–68

    Article  CAS  Google Scholar 

  18. Yang LJ, Pan QM, Rempel GL (2013) Development of a green separation technique for recovery of Wilkinson's catalysts from bulk hydrogenated nitrile butadiene rubber. Catal. Today. 207:153–161

    Article  CAS  Google Scholar 

  19. Peng XH, Pan QM, Rempel GL (2008) Bimetallic dendrimer-encapsulated nanoparticles as catalysts: a review of the research advances. Chem. Soc. Rev. 37:1619–1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lu X (2007) Tomalia. Size-Controlled in situ synthesis of metal nanoparticles on dendrimer-modified carbon nanotubes. J. Phys. Chem. C. 111:2416–2420

    CAS  Google Scholar 

  21. Drake MD, Bright FV, Detty MR (2003) Dendrimeric organochalcogen catalysts for the activation of hydrogen peroxide: Origins of the “Dendrimer Effect” with catalysts terminating in phenylseleno groups. J. Am. Chem. Soc. 125:12558–12566

    Article  CAS  PubMed  Google Scholar 

  22. Kaufman EA, Tarallo R, Falanga A (2017) Generation effect of newkome dendrimers on cellular uptake. Polymer. 113:67–73

    Article  CAS  Google Scholar 

  23. Hosseini H, Mahyari M, Bagheri A (2014) Pd and PdCo alloy nanoparticles supported on polypropylenimine dendrimer-grafted graphene: A highly efficient anodic catalyst for direct formic acid fuel cells. J. Power Sources 247:70–77

    Article  CAS  Google Scholar 

  24. Sharma AS, Shah D, Kaur H (2015) Gold nanoparticles supported on dendrimer@resin for the efficient oxidation of styrene using elemental oxygen. RSC Adv. 5:42935–42941

    Article  CAS  Google Scholar 

  25. Scott RWJ, Datye AK, Crooks RM (2003) Bimetallic palladium-platinum dendrimer-encapsulated catalysts. J. Am. Chem. Soc. 125:3708–3711

    Article  CAS  PubMed  Google Scholar 

  26. Astruc D, Boisselier E, Ornelas C (2010) Dendrimers designed for functions: From physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem. Rev. 110:1857–1959

    Article  CAS  PubMed  Google Scholar 

  27. Badetti E, Caminade AM, Majoral JP, Moreno-Maas M, Sebastián RM (2008) Palladium(0) nanoparticles stabilized by phosphorus dendrimers containing coordinating 15-membered triolefinic macrocycles in periphery. Langmuir. 24:2090–2101

    Article  CAS  PubMed  Google Scholar 

  28. Chung YM, Rhee HK (2004) Synthesis and catalytic applications of dendrimer-templated bimetallic nanoparticles. Catal. Surv. Asia. 8:211–223

    Article  CAS  Google Scholar 

  29. Hakim SH, Sener C, Albarubio AC (2015) Synthesis of supported bimetallic nanoparticles with controlled size and composition distributions for active site elucidation. J. Catal. 328:75–90

    Article  CAS  Google Scholar 

  30. Anna SM, Pleixats R (2010) Tsuji-Trost allylations with palladium recovery by phosphines/Pd(0)-triolefinic macrocyclic catalysts. J. Org. Chem. 695:1231–1236

    Article  CAS  Google Scholar 

  31. Llobet A, Masllorens E, Moreno-Maas M, Pla-Quintan A, Rodr′gueza M, Roglansa A (2002) Synthesis, catalytic activity and redox properties of palladium(0) complexes with 15-membered triolefinic macrocyclic ligands containing one, two or three ferrocenyl groups. Tetrahedron Lett. 43:1425–1428

    Article  CAS  Google Scholar 

  32. Pla-Quintana A, Roglans A, Vicente DOJ, Moreno-Maas M, Parella T, Benet-Buchholz J, Solans X (2005) Structural analysis of chiral complexes of palladium(0) with 15-membered triolefinic macrocyclic ligands. Chem. Eur. J. 11:2689–2697

    Article  CAS  PubMed  Google Scholar 

  33. Zhou W, Yi JM, Lin JW, Fang SF, Peng XH (2016) Preparation of facile separable homogeneous Rhodium catalyst and its application for the catalytic hydrogenation of nitrile butadiene rubber and styrene-butadiene rubber. Res. Chem. Intermediat. 43:1–12

    Google Scholar 

  34. Zhou W, Peng XH (2016) Preparation of a novel homogeneous bimetallic Rhodium/Palladium ionic catalyst and its application for the catalytic hydrogenation of nitrile butadiene rubber. J. Organomet. Chem. 823:76–82

    Article  CAS  Google Scholar 

  35. Moreno-Maas M, Pleixats R, Sebastián RM, Vallribera A, Roglans A (2004) Organometallic chemistry of 15-membered tri-olefinic macrocycles: catalysis by palladium(0) complexes in carbon–carbon bond-forming reactions. J. Organomet. Chem. 689:3669–3684

    Article  CAS  Google Scholar 

  36. Moreno-Manas M, Pleixats R, Spengler J, Chevrin C, Estrine B, Bouquillon S, Henin F, Muzart J, Pla-Quintana A, Roglans A (2003) 15-membered triolefinic macrocycles -catalytic role of (E,E,E)-1,6,11-tris(arenesulfonyl)-1,6,11-triazacyclopentadeca-3,8,13-triene complexes of palladium(0) in the presence of phosphanes. Eur. J. Org. Chem. 2:274–283

    Article  Google Scholar 

  37. Zhou W, Zhang DQ, Wang Y, Peng XH (2017) Preparation of Rh metallic nanoparticle stabilized by 15-membered nitrogen-containing triolefinic macrocycle-ended poly(propylene imine) dendrimer and its catalytic hydrogenation for nitrile-butadiene rubber. Colloid Polym. Sci. 295:1–6

    Article  CAS  Google Scholar 

  38. Mohammadi NA, Rempel GL (1987) Homogeneous selective catalytic hydrogenation of C=C in acrylonitrile-butadiene copolymer. Macromolecules. 20:2362–2368

    Article  CAS  Google Scholar 

  39. Filippo M, Antonella R, Nicholas DS (2011) Chemical reactivity of triphenyl phosphorothionate (TPPT) with iron: An ATR/FT-IR and XPS investigation. J. Phys. Chem. C. 115:1339–1354

    Article  CAS  Google Scholar 

  40. Pan QM, Rempel GL (2000) Numerical investigation of semibatch processes for hydrogenation of diene-based polymers. Ind. Eng. Chem. Res. 39:277–284

    Article  CAS  Google Scholar 

  41. Bhalchandra AK, Suman S, Shivappa B, Halligudi K, Vijayamohanan P (2008) Highly selective catalytic hydrogenation of arenes using rhodium nanoparticles supported on multiwalled carbon nanotubes. J. Phys. Chem. C. 112:13317–13319

    Article  CAS  Google Scholar 

  42. Erika V, Peter P, Albert O, Kornelia B, Andras E, Zoltan K, Janos K (2016) Stability and temperature-induced agglomeration of Rh nanoparticles supported by CeO2. Langmuir. 32:2761–2770

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported financially by the National Natural Science Foundation of China (Project No. 51273071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Peng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Peng, X. An insight into the catalytic hydrogenation mechanism of modified dendrimer-loaded rhodium ionic catalyst for unsaturated copolymer. Colloid Polym Sci 297, 1001–1009 (2019). https://doi.org/10.1007/s00396-019-04533-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-019-04533-2

Keywords

Navigation