Skip to main content
Log in

Synthesis and characterization of silver and copper metal–organic hybrid nanomaterials and their biological application

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Different types of hybrid organic–inorganic compounds were investigated as antibacterial agents. These compounds have exhibited reasonable antibacterial activity with lower cytotoxicity. Herein, compounds [Ag6(MBT)6] (1) and [Cu6(MBT)6] (2) (HMBT: 2-mercaptobenzothiazole) were synthesized by using the reflux method (1b, 2b) and sonochemical process (1s, 2s). The obtained products were characterized by powder X-ray diffraction, thermogravimetric analysis, infrared spectroscopy, and scanning electron microscopy. Then, their antibacterial activity was investigated by using the agar well diffusion method, and the results were reported by inhibition zone diameter. The results showed that nanosized samples were more active against bacteria because of their higher surface area. These two compounds showed different antibacterial activities, and the silver-based complex is a better antibacterial agent against both strains of bacteria which is attributed to the different mechanisms of Ag(I) and Cu(I) ions in antimicrobial action. They also showed a reasonable antibacterial effect that was comparable to other types of hybrid organic–inorganic compounds.

The antimicrobial effect of two polynuclear complexes from Ag and Cu is investigated. They have different antibacterial activities. Ag(I) and Cu(I) ions have different mechanism in antimicrobial action. Their antibacterial effect was comparable to other types of metal complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lu X, Ye J, Zhang D, Xie R, Bogale RF, Sun Y, Zhao L, Zhao Q, Ning G (2014) Silver carboxylate metal–organic frameworks with highly antibacterial activity and biocompatibility. J Inorg Biochem 138:114–121

    Article  CAS  Google Scholar 

  2. Vasilev K, Cavallaro A, Zilm P (2018) Antibacterial materials and coatings. Multidisciplinary Digital Publishing Institute

  3. Hoseinnejad M, Jafari SM, Katouzian I (2018) Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Critic Rev Microbiol 44:161–181

    Article  CAS  Google Scholar 

  4. Rezaie AB, Montazer M, Rad MM (2018) Environmentally friendly low cost approach for nano copper oxide functionalization of cotton designed for antibacterial and photocatalytic applications. J Clean Product 204:425–436

    Article  Google Scholar 

  5. Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K (2014) Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng: C 44:278–284

    Article  CAS  Google Scholar 

  6. Jo JH, Kim H-C, Huh S, Kim Y (2019) Antibacterial activities of Cu-MOFs containing glutarates and bipyridyl ligands. Dalton Trans 48:8084–8093

    Article  CAS  Google Scholar 

  7. Liu J, Sonshine DA, Shervani S, Hurt RH (2010) Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 4:6903–6913

    Article  CAS  Google Scholar 

  8. Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ et al (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotech Biol Med 3:95–101

    Article  CAS  Google Scholar 

  9. Yaqoob SB, Adnan R, Khan RMR, Rashid M (2020) Gold, silver, and palladium nanoparticles: a chemical tool for biomedical applications. Front Chem 8:376

    Article  CAS  Google Scholar 

  10. Yaqoob AA, Ahmad H, Parveen T, Ahmad A, Oves M, Ismail IM et al (2020) Recent advances in metal decorated nanomaterials and their various biological applications: a review. Front Chem 8:341

    Article  CAS  Google Scholar 

  11. Mortada B, Matar TA, Sakaya A, Atallah H, Kara Ali Z, Karam P, Hmadeh M (2017) Postmetalated zirconium metal organic frameworks as a highly potent bactericide. Inorg Chem 56:4739–4744

    Article  Google Scholar 

  12. Restrepo J, Serroukh Z, Santiago-Morales J, Aguado S, Gómez-Sal P, Mosquera ME et al (2017) An antibacterial Zn–MOF with hydrazinebenzoate linkers. Eur J Inorg Chem 2017:574–580

    Article  CAS  Google Scholar 

  13. Ximing G, Bin G, Yuanlin W, Shuanghong G (2017) Preparation of spherical metal–organic frameworks encapsulating Ag nanoparticles and study on its antibacterial activity. Mater Sci Eng C 80:698–707

    Article  Google Scholar 

  14. Ren X, Yang C, Zhang L, Li S, Shi S, Wang R, Zhang X, Yue T, Sun J, Wang J (2019) Copper metal–organic frameworks loaded on chitosan film for the efficient inhibition of bacteria and local infection therapy. Nanoscale 11:11830–11838

    Article  CAS  Google Scholar 

  15. Yaqoob AA, Umar K, Ibrahim MNM (2020) Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications–a review. Appl Nanosci 1-10

  16. Berchel M, Le Gall T, Denis C, Le Hir S, Quentel F, Elléouet C et al (2011) A silver-based metal–organic framework material as a ‘reservoir’of bactericidal metal ions. New J Chem 35:1000–1003

    Article  CAS  Google Scholar 

  17. Abbasi AR, Akhbari K, Morsali A (2012) Dense coating of surface mounted CuBTC metal–organic framework nanostructures on silk fibers, prepared by layer-by-layer method under ultrasound irradiation with antibacterial activity. Ultrason Sonochem 19:846–852

    Article  CAS  Google Scholar 

  18. Chen J, Zhang X, Huang C, Cai H, Hu S, Wan Q et al (2017) Osteogenic activity and antibacterial effect of porous titanium modified with metal-organic framework films. J Biomed Mats Res A 105:834–846

    Article  CAS  Google Scholar 

  19. Lu X, Ye J, Zhao L, Lin Y, Ning G (2014) Synthesis, structure, magnetism and antibacterial properties of a 2-D nickel (II) metal–organic framework based on 3-nitrophthalic acid and 4, 4′-bipyridine. J Coord Chem 67:1133–1140

    Article  CAS  Google Scholar 

  20. Wang C, Liu D, Lin W (2013) Metal–organic frameworks as a tunable platform for designing functional molecular materials. J Am Chem Soc 135:13222–13234

    Article  CAS  Google Scholar 

  21. Wyszogrodzka G, Marszałek B, Gil B, Dorożyński P (2016) Metal-organic frameworks: mechanisms of antibacterial action and potential applications. Drug Discov Today 21:1009–1018

    Article  CAS  Google Scholar 

  22. Alavijeh RK, Beheshti S, Akhbari K, Morsali A (2018) Investigation of reasons for metal–organic framework’s antibacterial activities. Polyhedron 156:257–278

    Article  Google Scholar 

  23. Tamames-Tabar C, Cunha D, Imbuluzqueta E, Ragon F, Serre C, Blanco-Prieto MJ, Horcajada P (2014) Cytotoxicity of nanoscaled metal–organic frameworks. J Mater Chem B 2:262–271

    Article  CAS  Google Scholar 

  24. Sun W, Li K, Liu H, Gu Y, Zhang Y, You Z et al (2017) Synthesis, characterization, crystal structures, and antibacterial activity of polynuclear nickel (II) and copper (II) complexes with similar tridentate Schiff bases. Russ J Coord Chem 43:693–699

    Article  CAS  Google Scholar 

  25. Tietge JE, Degitz SJ, Haselman JT, Butterworth BC, Korte JJ, Kosian PA, Lindberg-Livingston AJ, Burgess EM, Blackshear PE, Hornung MW (2013) Inhibition of the thyroid hormone pathway in Xenopus laevis by 2-mercaptobenzothiazole. Aquat Toxicol 126:128–136

    Article  CAS  Google Scholar 

  26. De Wever H, De Moor K, Verachtert H (1994) Toxicity of 2-mercaptobenzothiazole towards bacterial growth and respiration. Appl Microbiol Biotechnol 42:631–635

    Article  Google Scholar 

  27. Chen S-C, Yu R-M, Zhao Z-G, Chen S-M, Zhang Q-S, Wu X-Y, Wang F, Lu CZ (2010) A series of polynuclear complexes of d10 metals with interesting luminescent properties. Cryst Growth Des 10:1155–1160

    Article  CAS  Google Scholar 

  28. Yue C, Yan C, Feng R, Wu M, Chen L, Jiang F, Hong M (2009) A polynuclear d10−d10 metal complex with unusual near-infrared luminescence and high thermal stability. Inorg Chem 48:2873–2879

    Article  CAS  Google Scholar 

  29. Rodríguez HS, Hinestroza JP, Ochoa-Puentes C, Sierra CA, Soto CY (2014) Antibacterial activity against Escherichia coli of Cu-BTC (MOF-199) metal-organic framework immobilized onto cellulosic fibers. J Appl Polym Sci 131:40815

    Article  Google Scholar 

  30. Berchel M, Hernot S, Couthon-Gourvès H, Haelters J-P, Quentel F, Le Gall T et al (2013) Silver-phosphonate based metal organic frameworks: synthesis and antibacterial action. Phosphorus Sulfur Silicon Relat Elem 188:76–78

    Article  CAS  Google Scholar 

  31. Restrepo J, Serroukh Z, Santiago-Morales J, Aguado S, Gómez-Sal P, Mosquera ME et al (2017) An antibacterial Zn-MOF with hydrazinebenzoate linkers. Eur J Inorg Chem 2017:574–580

    Article  CAS  Google Scholar 

  32. Moradi Z, Akhbari K, Phuruangrat A, Costantino F (2017) Passage of the roughening temperature influence on the crystalline structure and morphology of a nano metal–organic material. J Inorg Organomet Polym Mater 27:1712–1718

    Article  CAS  Google Scholar 

  33. Mirzadeh E, Akhbari K, Phuruangrat A, Costantino F (2017) A survey on the effects of ultrasonic irradiation, reaction time and concentration of initial reagents on formation of kinetically or thermodynamically stable copper (I) metal-organic nanomaterials. Ultrason Sonochem 35:382–388

    Article  CAS  Google Scholar 

  34. Hasegawa S, Horike S, Matsuda R, Furukawa S, Mochizuki K, Kinoshita Y, Kitagawa S (2007) Three-dimensional porous coordination polymer functionalized with amide groups based on tridentate ligand: selective sorption and catalysis. J Am Chem Soc 129:2607–2614

    Article  CAS  Google Scholar 

  35. Janiak C, Vieth JK (2010) MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs). New J Chem 34:2366–2388

    Article  CAS  Google Scholar 

  36. Li J, Yuan X, Wu Y-n, Ma X, Li F, Zhang B et al (2018) From powder to cloth: facile fabrication of dense MOF-76 (Tb) coating onto natural silk fiber for feasible detection of copper ions. Chem Eng J 350:637–644

    Article  CAS  Google Scholar 

  37. Kianimehr A, Akhbari K, White J, Phuruangrat A (2020) The mechanochemical conversion of potassium coordination polymer nanostructures to interpenetrated sodium coordination polymers with halogen bond, metal–carbon and metal–metal interactions. CrystEngComm 22:888–894

    Article  CAS  Google Scholar 

  38. Shirazi FS, Akhbari K (2016) Sonochemical procedures; the main synthetic method for synthesis of coinage metal ion supramolecular polymer nano structures. Ultrason Sonochem 31:51–61

    Article  Google Scholar 

  39. Sau TK, Rogach AL, Jäckel F, Klar TA, Feldmann J (2010) Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mat 22:1805–1825

    Article  CAS  Google Scholar 

  40. Cioffi N, Rai M (2012) Nano-antimicrobials: progress and prospects, Springer Science & Business Media

  41. Yu S, Li G, Liu R, Ma D, Xue W (2018) Dendritic Fe3O4@ poly (dopamine)@ PAMAM nanocomposite as controllable NO-releasing material: a synergistic photothermal and NO antibacterial study. Adv Funct Mater 28:1707440

    Article  Google Scholar 

  42. Au-Duong A-N, Lee C-K (2017) Iodine-loaded metal organic framework as growth-triggered antimicrobial agent. Mater Sci Eng C 76:477–482

    Article  CAS  Google Scholar 

  43. Cavicchioli M, Massabni AC, Heinrich TA, Costa-Neto CM, Abrão EP, Fonseca BA et al (2010) Pt (II) and Ag (I) complexes with acesulfame: crystal structure and a study of their antitumoral, antimicrobial and antiviral activities. J Inorg Biochem 104:533–540

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to acknowledge the financial support of the University of Tehran for this research under grant number 01/1/389845.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamran Akhbari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakhaei, M., Akhbari, K. & Phuruangrat, A. Synthesis and characterization of silver and copper metal–organic hybrid nanomaterials and their biological application. Colloid Polym Sci 299, 773–781 (2021). https://doi.org/10.1007/s00396-020-04788-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04788-0

Keywords

Navigation