Skip to main content
Log in

Development and characterization of thin film composite developed from poly (vinyl alcohol) (PVA)/polyethylene glycol (PEG)/norbixin (NBx)/hydroxyapatite

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The advancement of the technology of biomaterials has significantly increased, which allows the development of materials that can be used to repair body parts, increase treatments, and improve the quality of human’s life. This study aimed to characterize poly (vinyl alcohol) (PVA) thin films unprecedented added with polyethylene glycol (PEG), norbixin (NBx) and Hydroxyapatite (HA). The systems were prepared by the casting technique and later characterized by FTIR, DRX, thermogravimetry (TG), differential scanning calorimetry (DSC), and optical microscopy (MO). The FTIR results demonstrated that the blends showed satisfactory band displacements with PEG insertion, as well as the peak intensity in relation to the PVA matrix. By XRD, it was possible to observe a displacement to larger angles with the insertion of PEG in relation to the PVA. The films showed a smooth and homogeneous surface. The structures have shown that they may be a desirable option for bone tissue restoration and reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Results available.

References

  1. Kakkar P, Verma S, Manjubala I, Madhan B (2014) Development of keratin-chitosan-gelatin composite scaffold for soft tissue engineering. Mater Sci Eng C 45:343–347. https://doi.org/10.1016/j.msec.2014.09.021

    Article  CAS  Google Scholar 

  2. Nitta S, Komatsu A, Ishii T, Ohnishi M, Inoue A, Iwamoto H (2017) Fabrication and characterization of water-dispersed chitosan nanofiber/poly(ethylene glycol) diacrylate/calcium phosphate-based porous composites. Carbohydr Polym 174:1034–1040. https://doi.org/10.1016/j.carbpol.2017.06.111

    Article  CAS  PubMed  Google Scholar 

  3. Kumar PTS, Srinivasan S, Lakshmanan VK, Tamura H, Nair SV, Jayakumar R (2011) Synthesis, characterization and cytocompatibility studies of α-chitin hydrogel/nano hydroxyapatite composite scaffolds. Int J Biol Macromol 49:20–31. https://doi.org/10.1016/j.ijbiomac.2011.03.006

    Article  CAS  PubMed  Google Scholar 

  4. Munro NH, McGrath KM (2012) Hydrogels as biomimetic mineralisation scaffolds. Bioinspired Biomim Nanobiomater 1:26–37. https://doi.org/10.1680/bbn.11.00003

    Article  CAS  Google Scholar 

  5. Wu G, Su B, Zhang W, Wang C (2008) In vitro behaviors of hydroxyapatite reinforced polyvinyl alcohol hydrogel composite. Mater Chem Phys 107:364–369. https://doi.org/10.1016/j.matchemphys.2007.07.028

    Article  CAS  Google Scholar 

  6. Kim HW, Knowles JC, Kim HE (2004) Hydroxyapatite/poly(ε-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery. Biomaterials 25:1279–1287. https://doi.org/10.1016/j.biomaterials.2003.07.003

    Article  CAS  PubMed  Google Scholar 

  7. Dias LLS, Mansur HS, Donnici CL, Pereira MM (2011) Synthesis and characterization of chitosan-polyvinyl alcohol-bioactive glass hybrid membranes. Biomatter 1:114–119. https://doi.org/10.4161/biom.1.1.17449

    Article  PubMed  PubMed Central  Google Scholar 

  8. Brandelero RPH, De Almeida FM, Alfaro A (2015) Microestrutura e propriedades de filmes de amido-álcool polivinílico-alginato adicionados de óleos essenciais de copaíba e capim limão. Quim Nova 38:910–916. https://doi.org/10.5935/0100-4042.20150098

    Article  CAS  Google Scholar 

  9. Nardi SQW, Teixeira SD (1967) Parabocz CRB (2015) Incorporação de fonte de nitrogênio em partículas de PVA e alginato de sódio e estudo da influência de ciclos de congelamento/descongelamento na caracterização do produto. Polimeros 25:606–613. https://doi.org/10.1590/0104-1428

    Article  Google Scholar 

  10. Studart AR (2013) Biological and bioinspired composites with spatially tunable heterogeneous architectures. Adv Funct Mater 23:4423–4436. https://doi.org/10.1002/adfm.201300340

    Article  CAS  Google Scholar 

  11. Wintermantel E, Mayer J, Blum J et al (1996) Tissue engineering scaffolds using superstructures. Biomaterials 17:83–91

    Article  CAS  Google Scholar 

  12. Mastrogiacomo M, Scaglione S, Martinetti R et al (2006) Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics. Biomaterials 27:3230–3237. https://doi.org/10.1016/j.biomaterials.2006.01.031

    Article  CAS  PubMed  Google Scholar 

  13. Wu S, Liu X, Yeung KWK, Liu C, Yang X (2014) Biomimetic porous scaffolds for bone tissue engineering. Mater Sci Eng R Rep 80:1–36. https://doi.org/10.1016/j.mser.2014.04.001

    Article  Google Scholar 

  14. Costa-Júnior ES, Barbosa-Stancioli EF, Mansur AAP, Vasconcelos WL, Mansur HS (2009) Preparation and characterization of chitosan/poly(vinyl alcohol) chemically crosslinked blends for biomedical applications. Carbohydr Polym 76:472–481. https://doi.org/10.1016/j.carbpol.2008.11.015

    Article  CAS  Google Scholar 

  15. Conz MB, Granjeiro JM, Soares G d A (2005) Physicochemical characterization of six commercial hydroxyapatites for medical-dental applicatons as bone graft. J Appl Oral Sci 13:136–140. https://doi.org/10.1590/s1678-77572005000200008

    Article  PubMed  Google Scholar 

  16. Larsson S, Hannink G (2011) Injectable bone-graft substitutes: Current products, their characteristics and indications, and new developments. Injury 42:S30–S34. https://doi.org/10.1016/j.injury.2011.06.013

    Article  PubMed  Google Scholar 

  17. Chen KY, Shyu PC, Dong GC, Chen YS, Kuo WW, Yao CH (2009) Reconstruction of calvarial defect using a tricalcium phosphate-oligomeric proanthocyanidins cross-linked gelatin composite. Biomaterials 30:1682–1688. https://doi.org/10.1016/j.biomaterials.2008.12.024

    Article  CAS  PubMed  Google Scholar 

  18. Wan DC, Nacamuli RP, Longaker MT (2006) Craniofacial bone tissue engineering 50:175–190. https://doi.org/10.1016/j.cden.2005.11.003

  19. Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9:63–84. https://doi.org/10.1023/A:1020200822435

    Article  CAS  Google Scholar 

  20. Wang Y, Kim YM, Langer R (2003) In vivo degradation characteristics of poly(glycerol sebacate). J Biomed Mater Res - Part A 66:192–197. https://doi.org/10.1002/jbm.a.10534

    Article  CAS  Google Scholar 

  21. Sousa RC, Almeida FRC, Viana VGF, Carvalho LFM, Vasconcelos DFP (2018) Poly(Hydroxybutyrate) and norbixin as biomaterials in biological applications. Rev Adv Mater Sci 53:218–225

    Article  CAS  Google Scholar 

  22. Alves AMM, de Miranda Fortaleza LM, Filho ALMM, Ferreira DCL, da Costa CLS, Viana VGF, Santos JZLV, de Oliveira RA, de Meira Gusmão GO, Soares LES (2018) Evaluation of bone repair after application of a norbixin membrane scaffold with and without laser photobiomodulation (λ 780 nm). Lasers Med Sci 33:1–12. https://doi.org/10.1007/s10103-018-2506-9

    Article  Google Scholar 

  23. Leal ER, De Oliveira IS, da Silva JL et al (2017) Ação cicatrizante da nanopartícula de prata com norbixina em queimaduras. ConScientiae Saúde 16:241–248. https://doi.org/10.5585/conssaude.v16n2.7312

    Article  Google Scholar 

  24. de Sousa RC, Filho ALMM, Ferreira DCL et al (2016) Assessment of genotoxicity PHB/norbixin/ethyleneglycol membrane by micronucleus Test and Comt Assay. Int J Pharm Sci Invent 2:34–39

    Google Scholar 

  25. da Costa CLS, Chaves MH (2005) Extração de Pigmentos das Sementes de Bixa orellana L.: uma alternativa para disciplinas experimentais de Química Orgânica. Quim Nova 28:149–152

    Article  Google Scholar 

  26. Mageste AB, Senra TDA, da Silva MCH, Bonomo RCF, da Silva LHM (2012) Thermodynamics and optimization of norbixin transfer processes in aqueous biphasic systems formed by polymers and organic salts. Sep Purif Technol 98:69–77. https://doi.org/10.1016/j.seppur.2012.06.012

    Article  CAS  Google Scholar 

  27. Muthukumar T, Sankari D, Tamil Selvi A, Sastry TP (2014) Preparation, characterization, and in vitro bioactivity of Bixa orellana extract-impregnated collagen microspheres. J Mater Sci 49:5730–5737. https://doi.org/10.1007/s10853-014-8291-3

    Article  CAS  Google Scholar 

  28. Yusá-marco DJ, Doménech-carbó MT, Vaccarella IL, Batista AF (2008) Characterization of colouring compounds in annatto (Bixa Orellana L.) used in historic textiles by means of uv-vis spectrophotometry and ft-ir spectroscopy. Publicación Inst Univ Restauración Patrim UPV 3:153–158

    Google Scholar 

  29. Zhang Y, Zhong Q (2013) Probing the binding between norbixin and dairy proteins by spectroscopy methods. Food Chem 139:611–616. https://doi.org/10.1016/j.foodchem.2013.01.073

    Article  CAS  PubMed  Google Scholar 

  30. Barbosa-Filho JM, da Silva-Filho RN, Lira BF et al (1998) Teor de bixina em quatro variedades de Bixa orellana L. cultivadas na Paraíba. Rev Bras 7–8:41–47

    Google Scholar 

  31. Silva PI, Nachtigall AM (2009) Fatores que influenciam a reação de saponificação dos carotenóides presentes no Urucum (Bixa orellana L.). Cienc Agrotecnol 33:1892–1897

    Article  Google Scholar 

  32. Nachtigall AM, Silva PI, Bertoldi MC, Stringheta PC (2009) Study of saponification reaction in annatto pigments. Cienc Agrotecnol 29:873–878

    Google Scholar 

  33. Afshar A, Ghorbani M, Ehsani N, Saeri MR, Sorrell CC (2003) Some important factors in the wet precipitation process of hydroxyapatite. Mater Des 24:197–202. https://doi.org/10.1016/S0261-3069(03)00003-7

    Article  CAS  Google Scholar 

  34. More S, Dhokne R, Moharil S (2017) Structural properties and temperature dependence dielectric properties of PVA-Al 2O 3 composite thin films. Polym Bull 75:909–923. https://doi.org/10.1007/s00289-017-2069-0

    Article  CAS  Google Scholar 

  35. More S, Dhokne R, Moharil S (2017) Dielectric relaxation and electric modulus of polyvinyl alcohol-Zinc oxide composite films. Mater Res Express 4:1–12. https://doi.org/10.1088/2053-1591/aa6b26

    Article  CAS  Google Scholar 

  36. Mansur HS, Oréfice RL, Mansur AAP (2004) Characterization of poly(vinyl alcohol)/poly(ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy. Polymer (Guildf) 45:7193–7202. https://doi.org/10.1016/j.polymer.2004.08.036

    Article  CAS  Google Scholar 

  37. Mansur HS, Sadahira CM, Souza AN, Mansur AAP (2008) FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater Sci Eng C 28:539–548. https://doi.org/10.1016/j.msec.2007.10.088

    Article  CAS  Google Scholar 

  38. Padil VVT, Nguyen NHA, Ševcu A, Cerník M (2015) Fabrication, characterization, and antibacterial properties of electrospun membrane composed of gum karaya, polyvinyl alcohol, and silver nanoparticles. J Nanomater 2015:1–10. https://doi.org/10.1155/2015/750726

    Article  CAS  Google Scholar 

  39. Flower NAL, Brabu B, Revathy M, Gopalakrishnan C, Raja SVK, Murugan SS, Kumaravel TS (2012) Mutation research/genetic toxicology and environmental mutagenesis characterization of synthesized silver nanoparticles and assessment of its genotoxicity potentials using the alkaline comet assay. Mutat Res 742:61–65. https://doi.org/10.1016/j.mrgentox.2011.12.003

    Article  CAS  PubMed  Google Scholar 

  40. Wang J, Liang J, Sun L, Gao S (2019) PVA/CS and PVA/CS/Fe gel beads’ synthesis mechanism and their performance in cultivating anaerobic granular sludge. Chemosphere 219:130–139. https://doi.org/10.1016/j.chemosphere.2018.12.014

    Article  CAS  PubMed  Google Scholar 

  41. Chen G, Chen N, Wang Q (2018) Preparation of poly (vinyl alcohol)/ionic liquid composites with improved processability and electrical conductivity for fused deposition modeling. Mater Des 157:273–283. https://doi.org/10.1016/j.matdes.2018.07.054

    Article  CAS  Google Scholar 

  42. Chol CG, Dhabhai R, Dalai AK, Reaney M (2018) Purification of crude glycerol derived from biodiesel production process: Experimental studies and techno-economic analyses. Fuel Process Technol 178:78–87. https://doi.org/10.1016/j.fuproc.2018.05.023

    Article  CAS  Google Scholar 

  43. Liu H, Adhikari R, Guo Q, Adhikari B (2013) Preparation and characterization of glycerol plasticized (high-amylose) starch-chitosan films. J Food Eng 116:588–597. https://doi.org/10.1016/j.jfoodeng.2012.12.037

    Article  CAS  Google Scholar 

  44. Fontana KB, Chaves ES, Sanchez JDS et al (2016) Biossorption of Pb(II) by Urucum shells (Bixa orellana) in aqueous solutions: kinetic, equilibrum and thermodynamic study. Quim Nova 39:1078–1084. https://doi.org/10.5935/0100-4042.20160113

    Article  CAS  Google Scholar 

  45. Ramamoorthy S, Prabhu F, Kundu K et al (2010) Molecular characterization of bixin — an important industrial product. Ind Crop Prod 32:48–53. https://doi.org/10.1016/j.indcrop.2010.03.001

    Article  CAS  Google Scholar 

  46. Zongo S, Kerasidou AP, Sone BT, Diallo A, Mthunzi P, Iliopoulos K, Nkosi M, Maaza M, Sahraoui B (2015) Nonlinear optical properties of poly(methyl methacrylate) thin films doped with Bixa Orellana dye. Appl Surf Sci 340:72–77. https://doi.org/10.1016/j.apsusc.2015.02.161

    Article  CAS  Google Scholar 

  47. Xia SH, Teng SH, Wang P (2018) Synthesis of bioactive polyvinyl alcohol/silica hybrid fibers for bone regeneration. Mater Lett 213:181–184. https://doi.org/10.1016/j.matlet.2017.11.084

    Article  CAS  Google Scholar 

  48. Agarwal R, Alam MS, Gupta B (2013) Polyvinyl alcohol-polyethylene oxide-carboxymethyl cellulose membranes for drug delivery. J Appl Polym Sci 129:3728–3736. https://doi.org/10.1002/app.39144

    Article  CAS  Google Scholar 

  49. Ma Y, Zhang W, Wang Z, Wang Z, Xie Q, Niu H, Guo H, Yuan Y, Liu C (2016) PEGylated poly(glycerol sebacate )-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity. Acta Biomater 44:110–124. https://doi.org/10.1016/j.actbio.2016.08.023

    Article  CAS  PubMed  Google Scholar 

  50. Hossan Y, Molla AI, Islam S, Rana AA (2012) Fabrication and characterization of polyvinyl alcohol- hydroxyapatite biomimetic scaffold by freeze thawing in situ synthesized hybrid suspension for bone tissue engineering. Int J Emerg Technol Adv Eng 2:696–701

    Google Scholar 

  51. Chaudhuri B, Mondal B, Ray SK, Sarkar SC (2016) A novel biocompatible conducting polyvinyl alcohol (PVA)-polyvinylpyrrolidone (PVP)-hydroxyapatite (HAP) composite scaffolds for probable biological application. Colloids Surf B: Biointerfaces 143:71–80. https://doi.org/10.1016/j.colsurfb.2016.03.027

    Article  CAS  PubMed  Google Scholar 

  52. Fernandes DM, Andrade JL, Lima MK, Silva MF, Andrade LHC, Lima SM, Hechenleitner AAW, Pineda EAG (2013) Thermal and photochemical effects on the structure, morphology, thermal and optical properties of PVA/Ni0.04Zn0.96O and PVA/Fe 0.03Zn0.97O nanocomposite films. Polym Degrad Stab 98:1862–1868. https://doi.org/10.1016/j.polymdegradstab.2013.05.003

    Article  CAS  Google Scholar 

  53. Liu P, Chen W, Liu C, Tian M, Liu P (2019) A novel poly(vinyl alcohol)/poly(ethylene glycol) scaffold for tissue engineering with a unique bimodal open-celled structure fabricated using supercritical fluid foaming. Sci Rep 9:1–12. https://doi.org/10.1038/s41598-019-46061-7

    Article  CAS  Google Scholar 

  54. Chaker JA, Dahmouche K, Craievich AF, Santilli CV, Pulcinelli SH (2000) Structure of weakly bonded PPG-silica nanocomposites. J Appl Crystallogr 33:700–703. https://doi.org/10.1107/S0021889899013254

    Article  CAS  Google Scholar 

  55. Tripathi S, Mehrotra GK, Dutta PK (2009) International journal of biological macromolecules physicochemical and bioactivity of cross-linked chitosan – PVA film for food packaging applications 45:372–376. https://doi.org/10.1016/j.ijbiomac.2009.07.006

  56. Pavaloiu R, Stoica-guzun A, Stroescu M et al (2014) International Journal of Biological Macromolecules Composite films of poly ( vinyl alcohol )– chitosan – bacterial cellulose for drug controlled release. Int J Biol Macromol 68:117–124. https://doi.org/10.1016/j.ijbiomac.2014.04.040

    Article  CAS  PubMed  Google Scholar 

  57. Kumar HMPN, Prabhakar MN, Prasad CV et al (2010) Compatibility studies of chitosan/PVA blend in 2 % aqueous acetic acid solution at 30 ° C. Carbohydr Polym 82:251–255. https://doi.org/10.1016/j.carbpol.2010.04.021

    Article  CAS  Google Scholar 

  58. Paul MA, Alexandre M, Degée P, Henrist C, Rulmont A, Dubois P (2003) New nanocomposite materials based on plasticized poly(L-lactide) and organo-modified montmorillonites: thermal and morphological study. Polymer (Guildf) 44:443–450. https://doi.org/10.1016/S0032-3861(02)00778-4

    Article  CAS  Google Scholar 

  59. Bonilla J, Fortunati E, Atarés L, Chiralt A, Kenny JM (2014) Physical, structural and antimicrobial properties of poly vinyl alcohol-chitosan biodegradable films. Food Hydrocoll 35:463–470. https://doi.org/10.1016/j.foodhyd.2013.07.002

    Article  CAS  Google Scholar 

  60. Restrepo I, Medina C, Meruane V et al (2018) The effect of molecular weight and hydrolysis degree of poly (vinyl alcohol)(PVA) on the thermal and mechanical properties of poly (lactic acid)/PVA blends. Pol 5169:169–177

    Google Scholar 

  61. Zhou X-M (2009) Preparation and Characterization of PEG/MDI/PVA Copolymer as solid–solid phase change heat storage material. J Appl Polym Sci 113:2041–2045. https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  62. Abu Ghalia M, Dahman Y (2015) Radiation crosslinking polymerization of poly (vinyl alcohol) and poly (ethylene glycol) with controlled drug release. J Polym Res 22:1–9. https://doi.org/10.1007/s10965-015-0861-9

    Article  CAS  Google Scholar 

  63. Falqi FH, Bin-Dahman OA, Hussain M, Al-Harthi MA (2018) Preparation of miscible PVA/PEG blends and effect of graphene concentration on thermal, crystallization, morphological, and mechanical properties of PVA/PEG (10 wt%) blend. Int J Polym Sci 2018:1–10. https://doi.org/10.1155/2018/8527693

    Article  CAS  Google Scholar 

  64. Scotter MJ (1995) Characterisation of the coloured thermal degradation products of bixin from annatto and a revised mechanism for their formation. Food Chem 53:177–185. https://doi.org/10.1016/0308-8146(95)90785-6

    Article  CAS  Google Scholar 

  65. Lima LRP, de Oliveira TT, Nagem TJ et al (2001) Bixina, norbixina e quercetina e seus efeitos no metabolismo lipídico de coelhos. Braz J Vet Res Anim Sci 38:196–200. https://doi.org/10.1590/s1413-95962001000400010

    Article  Google Scholar 

  66. Barbosa MIMJ, Borsarelli CD, Mercadante AZ (2005) Light stability of spray-dried bixin encapsulated with different edible polysaccharide preparations. Food Res Int 38:989–994. https://doi.org/10.1016/j.foodres.2005.02.018

    Article  CAS  Google Scholar 

  67. Agool IR, Kadhim KJ, Hashim A (2017) Fabrication of new nanocomposites: (PVA-PEG-PVP) blend-zirconium oxide nanoparticles) for humidity sensors. Int J Plast Technol 21:397–403. https://doi.org/10.1007/s12588-017-9192-5

    Article  CAS  Google Scholar 

  68. Shuai C, Cheng Y, Yang W et al (2020) Magnetically actuated bone scaffold: microstructure, cell response and osteogenesis. Compos Part B Eng 192. https://doi.org/10.1016/j.compositesb.2020.107986

  69. Yang Y, Lu C, Peng S, Shen L, Wang D, Qi F, Shuai C (2020) Laser additive manufacturing of Mg-based composite with improved degradation behaviour. Virtual Phys Prototyp 15:2759–2293. https://doi.org/10.1080/17452759.2020.1748381

    Article  Google Scholar 

  70. Shuai C, Yu L, Feng P, Zhong Y, Zhao Z, Chen Z, Yang W (2020) Organic montmorillonite produced an interlayer locking effect in a polymer scaffold to enhance interfacial bonding. Mater Chem Front 4:2398–2408. https://doi.org/10.1039/d0qm00254b

    Article  CAS  Google Scholar 

  71. Shuai C, Yang W, He C, Peng S, Gao C, Yang Y, Qi F, Feng P (2019) A magnetic micro-environment in scaffolds for stimulating bone regeneration. Mater Des 185:108275. https://doi.org/10.1016/j.matdes.2019.108275

    Article  CAS  Google Scholar 

  72. Yang W, Zhong Y, He C, Peng S, Yang Y, Qi F, Feng P, Shuai C (2020) Electrostatic self-assembly of pFe3O4 nanoparticles on graphene oxide: a co-dispersed nanosystem reinforces PLLA scaffolds. J Adv Res 24:191–203. https://doi.org/10.1016/j.jare.2020.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shuai C, Yu L, Feng P, Gao C, Peng S (2020) Interfacial reinforcement in bioceramic/biopolymer composite bone scaffold: The role of coupling agent. Colloids Surf B: Biointerfaces 193:111083. https://doi.org/10.1016/j.colsurfb.2020.111083

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors wish to express their gratitude to the institutions, IFPI, UFPI, and UEMA for the collaboration and support for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente Galber Freitas Viana.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

Not applicable for that section.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(RTF 67 kb)

ESM 2

(RTF 21571 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Júnior, R.M., dos Santos Freitas Viana, D., da Silva, D.A. et al. Development and characterization of thin film composite developed from poly (vinyl alcohol) (PVA)/polyethylene glycol (PEG)/norbixin (NBx)/hydroxyapatite. Colloid Polym Sci 299, 751–762 (2021). https://doi.org/10.1007/s00396-020-04777-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04777-3

Keywords

Navigation