Skip to main content
Log in

Indometacin-loaded micelles based on star-shaped PLLA-TPGS copolymers: effect of arm numbers on drug delivery

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Star-shaped copolymers based on star-shaped poly (L-lactide) (s-PLLA) and tocopheryl polyethylene glycol 1000 succinate (TPGS) (s-PLLA-TPGS) were synthesized with structural variation on arm numbers in order to investigate the relationship between the arm numbers of s-PLLA-TPGS copolymers and their micelle properties. The structure and Mw of s-PLLA-TPGS were characterized with 1H NMR, GPC, DSC, and XRD. The indometacin(IMC)-loaded s-PLLA-TPGS micelles were obtained by dialysis method. The effects of arm numbers of s-PLLA-TPGS copolymers on surface morphology, particle size, zeta potential, drug loading content (LC), drug encapsulation efficiency (EE), and in vitro drug release behavior of prepared micelles were studied. The results indicated that the average diameters, LC, and EE of IMC-loaded s-PLLA-TPGS micelles gradually increased in the order of 4-arm, 5-arm, and 6-arm s-PLLA-TPGS copolymers. The in vitro release studies showed that the IMC accumulative release can be decreased by increasing the arm numbers of the s-PLLA-TPGS copolymers, and the release profiles of IMC from the s-PLLA-TPGS copolymers followed the Baker-Lonsdale model equation. The results suggest that the arm number regulation of s-PLLA-TPGS copolymers can provide a new strategy for designing drug carriers of high efficiency.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kataoka K, Harada A, Nagasaki Y (2012) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 64(1):37–48. https://doi.org/10.1016/j.addr.2012.09.013

    Article  Google Scholar 

  2. Mai Y, Eisenberg A (2012) Self-assembly of block copolymers. Chem Soc Rev 41(18):5969–5985. https://doi.org/10.1039/c2cs35115c

    Article  CAS  PubMed  Google Scholar 

  3. Epps TH, O'Reilly RK (2016) Block copolymers: controlling nanostructure to generate functional materials-synthesis, characterization, and engineering. Chem Sci 47(15):1674–1689. https://doi.org/10.1039/c5sc03505h

    Article  CAS  Google Scholar 

  4. Wu BQ, Liang Y, Tan Y, Xie CM, Shen J, Zhang M, Liu XK, Yang LX, Zhang FJ, Liu L (2016) Genistein-loaded nanoparticles of star-shaped diblock copolymer mannitol-core PLGA-TPGS for the treatment of liver cancer. Mater Sci Eng C 59:792–800. https://doi.org/10.1016/j.msec.2015.10.087

    Article  CAS  Google Scholar 

  5. Tao W, Zeng XW, Liu T, Wang ZY, Xiong QQ, Ouyang CP, Huang LQ, Mei L (2013) Docetaxel-loaded nanoparticles based on star-shaped mannitol-core PLGA-TPGS diblock copolymer for breast cancer therapy. Acta Biomater 9(11):8910–8920. https://doi.org/10.1016/j.actbio.2013.06.034

    Article  CAS  PubMed  Google Scholar 

  6. Zeng XW, Tao W, Mei L, Huang LG, Tan CY, Feng SS (2013) Cholic acid-functionalized nanoparticles of star-shaped PLGA-vitamin E TPGS copolymer for docetaxel delivery to cervical cancer. Biomaterials 34(25):6058–6067. https://doi.org/10.1016/j.biomaterials.2013.04.052

    Article  CAS  PubMed  Google Scholar 

  7. Tang XL, Liang Y, Zhu YQ, Cai SY, Sun LL, Chen TY (2014) Enhanced anticancer activity of DM1-loaded star-shaped folate-core PLA-TPGS nanoparticles. Nanoscale Res Lett 9(1):1–9. https://doi.org/10.1186/1556-276x-9-563

    Article  Google Scholar 

  8. Tang XL, Cai SY, Zhang RB, Peng L, Chen HB, Zheng Y, Sun LL (2013) Paclitaxel-loaded nanoparticles of star-shaped cholic acid-core PLA-TPGS copolymer for breast cancer treatment. Nanoscale Res Lett 8(1):1–12. https://doi.org/10.1186/1556-276x-8-420

    Article  Google Scholar 

  9. Huang XJ, Xiao Y, Lang MD (2011) Self-assembly of pH-sensitive mixed micelles based on linear and star copolymers for drug delivery. J Colloid Interface Sci 364(1):92–99. https://doi.org/10.1016/j.jcis.2011.08.028

    Article  CAS  PubMed  Google Scholar 

  10. Namazi H, Jafarirad S (2011) In vitro photo-controlled drug release system based on amphiphilic linear-dendritic diblock copolymers; self-assembly behavior and application as nanocarrier. J Pharm Pharm Sci 14(2):162–180. https://doi.org/10.18433/j3zc73

    Article  CAS  PubMed  Google Scholar 

  11. Zhang XJ, Zhong ZL, Zhuo RX (2011) Amphiphilic linear-hyperbranched block copolymers bearing one poly(ethylene glycol) chain and several linear poly(ε-caprolactone) chains. J Control Release 152:e118–e119. https://doi.org/10.1016/j.jconrel.2011.08.162

    Article  CAS  PubMed  Google Scholar 

  12. Li XJ, Qian YF, Liu T, Hu XL, Zhang GY, You YZ, Liu SY (2011) Amphiphilic multiarm star block copolymer-based multifunctional unimolecular micelles for cancer targeted drug delivery and MR imaging. Biomaterials 32(27):6595–6605. https://doi.org/10.1016/j.biomaterials.2011.05.049

    Article  CAS  PubMed  Google Scholar 

  13. Jie P, Venkatraman SS, Min F, Freddy BYC, Huat GL (2005) Micelle-like nanoparticles of star-branched PEO-PLA copolymers as chemotherapeutic carrier. J Control Release 110(1):20–33. https://doi.org/10.1016/j.jconrel.2005.09.011

    Article  CAS  PubMed  Google Scholar 

  14. Peng CL, Shieh MJ, Tsai MH, Chang CC, Lai PS (2008) Self-assembled star-shaped chlorin-core poly(ɛ-caprolactone)–poly(ethylene glycol) diblock copolymer micelles for dual chemo-photodynamic therapies. Biomaterials 29(26):3599–3608. https://doi.org/10.1016/j.biomaterials.2008.05.018

    Article  CAS  PubMed  Google Scholar 

  15. Chen JC, Li JZ, Liu JH, Weng B, Xu LQ (2016) Synthesis and self-assembly of four-armed star copolymer based on poly(ethylene brassylate) hydrophobic block as potential drug carries. J Nanopart Res 18(5):134. https://doi.org/10.1007/s11051-016-3446-6

    Article  CAS  Google Scholar 

  16. Garofalo C, Capuano G, Sottile R, Tallerico R, Adami R, Reverchon E, Carbone E, Izzo L, Pappalardo D (2014) Different insight into amphiphilic PEG-PLA copolymers: influence of macromolecular architecture on the micelle formation and cellular uptake. Biomacromolecules 15(1):403–415. https://doi.org/10.1021/bm401812r

    Article  CAS  PubMed  Google Scholar 

  17. Freitas MN, Marchetti JM (2005) Nimesulide PLA microspheres as a potential sustained release system for the treatment of inflammatory diseases. Int J Pharm 295(1–2):201. https://doi.org/10.1016/j.ijpharm.2005.03.003

    Article  CAS  PubMed  Google Scholar 

  18. Liu R, Huang SS, Wan YH, Ma GH, Su ZG (2006) Preparation of insulin-loaded PLA/PLGA microcapsules by a novel membrane emulsification method and its release in vitro. Colloids Surf B: Biointerfaces 51(1):30–38. https://doi.org/10.1016/j.colsurfb.2006.05.014

    Article  CAS  PubMed  Google Scholar 

  19. Park W, Kim D, Hang HC, Bae YH, Na K (2012) Multi-arm histidine copolymer for controlled release of insulin from poly(lactide-co-glycolide) microsphere. Biomaterials 33(34):8848–8857. https://doi.org/10.1016/j.biomaterials.2012.08.042

    Article  CAS  PubMed  Google Scholar 

  20. Yang CM, Jiang LQ, Bu SJ, Zhang LH, Xie XJ, Zeng QG, Zhu DW, Zheng Y (2013) Intravitreal administration of dexamethasone-loaded PLGA-TPGS nanoparticles for the treatment of posterior segment diseases. J Biomed Nanotechnol 9(9):1617–1623. https://doi.org/10.1166/jbn.2013.1646

    Article  CAS  PubMed  Google Scholar 

  21. Wang KB, Guo LH, Xiong W, Sun LL, Zheng Y (2014) Nanoparticles of star-like copolymer mannitol-functionalized poly(lactide)-vitamin E TPGS for delivery of paclitaxel to prostate cancer cells. J Biomater Appl 29(3):329–340. https://doi.org/10.1177/0885328214527486

    Article  CAS  PubMed  Google Scholar 

  22. Zhang Z, Feng SS (2006) Self-assembled nanoparticles of poly(lactide)-vitamin E TPGS copolymers for oral chemotherapy. Int J Pharm 324(2):191–198. https://doi.org/10.1016/j.ijpharm.2006.06.013

    Article  CAS  PubMed  Google Scholar 

  23. Li PY, Lai PS, Hung WC, Syu WJ (2010) Poly(l-lactide)-vitamin E TPGS nanoparticles enhanced the cytotoxicity of dxorubicin in drug-resistant MCF-7 breast cancer cells. Biomacromolecules 11(10):2576–2582. https://doi.org/10.1021/bm1005195

    Article  CAS  PubMed  Google Scholar 

  24. Pan J, Feng SS (2008) Targeted delivery of paclitaxel using folate-decorated poly(lactide)-vitamin E TPGS nanoparticles. Biomaterials 29(17):2663–2672. https://doi.org/10.1016/j.biomaterials.2008.02.020

    Article  CAS  PubMed  Google Scholar 

  25. Hua C, Dong CM (2007) Synthesis, characterization, effect of architecture on crystallization of biodegradable poly(epsilon-caprolactone)-b-poly(ethylene oxide) copolymers with different arms and nanoparticles thereof. J Biomed Mater Res A 82A(3):689–700. https://doi.org/10.1002/jbm.a.31167

    Article  CAS  Google Scholar 

  26. Ma GL, Zhang C, Zhang LH, Sun HF, Song CX, Wang C, Kong DL (2016) Doxorubicin-loaded micelles based on multiarm star-shaped PLGA-PEG block copolymers: influence of arm numbers on drug delivery. J Mater Sci Mater Med 27(1):1–15. https://doi.org/10.1007/s10856-015-5610-4

    Article  CAS  Google Scholar 

  27. Lim HJ, Lee H, Kim KH, Huh J, Ahn CH, Kim JW (2013) Effect of molecular architecture on micellization, drug loading and releasing of multi-armed poly(ethylene glycol)-b-poly(ε-caprolactone) star polymers. Colloid Polym Sci 291(8):1817–1827. https://doi.org/10.1007/s00396-013-2916-y

    Article  CAS  Google Scholar 

  28. Ding AM, Zhou YF, Chen PP, Nie WY (2017) Ibuprofen-loaded micelles based on star-shaped erythritol-core PLLA-PEG copolymer: effect of molecular weights of PEG. Colloid Polym Sci 295(9):1609–1619. https://doi.org/10.1007/s00396-017-4141-6

    Article  CAS  Google Scholar 

  29. Ding AM, Teng LJ, Zhou YF, Chen PP, Nie WY (2018) Synthesis and characterization of bovine serum albumin-loaded microspheres based on star-shaped PLLA with a xylitol core and their drug release behaviors. Polym Bull 75(7):2917–2931. https://doi.org/10.1007/s00289-017-2197-6

    Article  CAS  Google Scholar 

  30. Zhao Y, Wang Z, Yang F (2010) Characterization of poly(D,L-lactic acid) synthesized by direct melt polymerization and its application in Chinese traditional medicine compound prescription microspheres. J Appl Polym Sci 97(1):195–200. https://doi.org/10.1002/app.21746

    Article  CAS  Google Scholar 

  31. Chen YX, Yang ZY, Liu C, Wang CW, Zhao SX, Yang J, Sun HF, Zhang ZP, Kong DL, Song CX (2013) Synthesis, characterization, and evaluation of paclitaxel loaded in six-arm star-shaped poly(lactic-co-glycolic acid). Int J Nanomedicine 8(1):4315–4326. https://doi.org/10.2147/ijn.s51629

    Article  PubMed Central  PubMed  Google Scholar 

  32. Runnel R, Mäkinen KK, Honkala S, Olak J, Mäkinen PL, Nõmmela R, Vahlberg T, Honkala E, Saag M (2013) Effect of three-year consumption of erythritol, xylitol and sorbitol candies on various plaque and salivary caries-related variables. J Dent 41(12):1236–1244. https://doi.org/10.1016/j.jdent.2013.09.007

    Article  CAS  PubMed  Google Scholar 

  33. Ghassemi AH, van Steenbergen MJ, Talsma H, van Nostrum CF, Jiskoot W, Crommelin DJ, Hennink WE (2009) Preparation and characterization of protein loaded microspheres based on a hydroxylated aliphatic polyester, poly(lactic-co-hydroxymethyl glycolic acid). J Control Release 138(1):57–63. https://doi.org/10.1016/j.jconrel.2009.04.025

    Article  CAS  PubMed  Google Scholar 

  34. Jie P, Venkatraman SS, Min F, Freddy BYC, Huat GL (2005) Micelle-like nanoparticles of star-branched PEO–PLA copolymers as chemotherapeutic carrier. J Control Release 110(1):20–33. https://doi.org/10.1016/j.jconrel.2005.09.011

    Article  CAS  PubMed  Google Scholar 

  35. Lee SJ, Bae Y, Kataoka K, Kim D, Lee DS, Kim SC (2008) In vitro release and in vivo anti-tumor efficacy of doxorubicin from biodegradable temperature-sensitive star-shaped PLGA-PEG block copolymer hydrogel. Polym J 40(2):171–176. https://doi.org/10.1295/polymj.pj2007179

    Article  CAS  Google Scholar 

  36. Zhang Z, Feng SS (2006) Nanoparticles of poly(lactide)/vitamin E TPGS copolymer for cancer chemotherapy: synthesis, formulation, characterization and in vitro drug release. Biomaterials 27(2):262–270. https://doi.org/10.1016/j.biomaterials.2005.05.104

    Article  CAS  PubMed  Google Scholar 

  37. Siepmann J, Siepmann F (2012) Modeling of diffusion controlled drug delivery. J Control Release 161(2):51–362. https://doi.org/10.1016/j.jconrel2011.10.006

  38. Essa S, Rabanel JM, Hildgen P (2010) Effect of polyethylene glycol (PEG) chain organization on the physicochemical properties of poly(D, L- lactide) (PLA)-based nanoparticles. Eur J Pharm Biopharm 75(2):96–106. https://doi.org/10.1016/j.ejpb.2010.03.002

    Article  CAS  PubMed  Google Scholar 

  39. Ma C, Pan P, Shan G, Bao Y, Fujita M, Maeda M (2015) Core-shell structure, biodegradation, and drug release behavior of poly(lactic acid)/poly(ethylene glycol) block copolymer micelles tuned by macromolecular stereostructure. Langmuir 31(4):1527–1536. https://doi.org/10.1021/la503869d

    Article  CAS  PubMed  Google Scholar 

  40. Teng LJ, Nie WY, Zhou YF, Chen PP (2015) Synthesis and characterization of star-shaped PLLA with sorbitol as core and its microspheres application in controlled drug release. J Appl Polym Sci 132(27):42213. https://doi.org/10.1002/app.42213

    Article  CAS  Google Scholar 

  41. Liu HJ, Chu HC, Lin LH, Wu JH (2013) Crystallization behavior and thermal properties of biodegradable poly(L-lactide)-poly(ethylene glycol) block copolymers. J Mater Res 28(8):1111–1117. https://doi.org/10.1557/jmr.2013.47

    Article  CAS  Google Scholar 

  42. Hussain H, Tan BH, Gudipati CS, Liu Y, He CB, Davis TP (2008) Synthesis and self-assembly of poly(styrene)-b-poly(N-vinylpyrrolidone) amphiphilic diblock copolymers made via a combined ATRP and MADIX approach. J Polym Sci Part A Pol Chem 46(16):5604–5615. https://doi.org/10.1002/pola.22882

    Article  CAS  Google Scholar 

  43. Huang GJ, Zou YN, Luo WK, Xiao M, Han DM, Wang SJ, Meng YZ (2015) Nonisothermal crystallization behavior and kinetics of poly(l -lactide-co-propylene carbonate). J Therm Anal Calorim 121(2):877–883. https://doi.org/10.1007/s10973-015-4502-7

    Article  CAS  Google Scholar 

  44. Tian JL, Wang L, Wang L, Ke X (2014) A wogonin-loaded glycyrrhetinic acid-modified liposome for hepatic targeting with anti-tumor effects. Drug Delivery 21(7):553–559. https://doi.org/10.3109/10717544.2013.853850

    Article  CAS  PubMed  Google Scholar 

  45. Lu CF, Guo SR, Zhang YQ, Yin M (2010) Synthesis and aggregation behavior of four types of different shaped PCL-PEG block copolymers. Polym Int 55(6):694–700. https://doi.org/10.1002/pi.2034

    Article  CAS  Google Scholar 

  46. Goh SL, Platt AP, Rutledge KE, Lee I (2008) Synthesis and aggregation of poly(valine)-poly (ethylene glycol) block copolymers. J Polym Sci Part A Pol Chem 46(16):5381–5389. https://doi.org/10.1002/pola.22858

    Article  CAS  Google Scholar 

  47. Kim KH, Cui GH, Lim HJ, Huh J, Ahn CH, Jo WH (2004) Synthesis and micellization of star-shaped poly(ethylene glycol)-block-poly(ε-caprolactone). Macromol Chem Phys 205(205):1684–1692. https://doi.org/10.1002/macp.200400084

    Article  CAS  Google Scholar 

  48. Zhang CN, Wang W, Liu T, Wu YK, Guo H, Wang P, Tian Q, Wang YM, Yuan Z (2012) Doxorubicin-loaded glycyrrhetinic acid-modified alginate nanoparticles for liver tumor chemotherapy. Biomaterials 33(7):2187–2196. https://doi.org/10.1016/j.biomaterials.2011.11.045

    Article  CAS  PubMed  Google Scholar 

  49. Sarala P, Sidhartha H, Gevoni B, Graves RA, Dakshinamurthy DC, Srikanta D, Vimal K, Mandal TK (2011) Cellular delivery of PEGylated PLGA nanoparticles. J Pharm Pharmacol 64(1):61–67. https://doi.org/10.1111/j.2042

    Article  Google Scholar 

  50. Nguyen HN, Ha PT, Sao Nguyen AS, Nguyen DT, Do HD, Thi QN, Thi MNH (2016) Curcumin as fluorescent probe for directly monitoring in vitro uptake of curcumin combined paclitaxel loaded PLA-TPGS nanoparticles. Adv Nat Sci Nanosci Nanotechnol 7(2):025001. https://doi.org/10.1088/2043-6262/7/2/025001

    Article  CAS  Google Scholar 

  51. Essa S, Rabanel JM, Hildgen P (2010) Effect of polyethylene glycol (PEG) chain organization on the physicochemical properties of poly(D, L-lactide) (PLA) based nanoparticles. Eur J Pharm Biopharm 75(2):96–106. https://doi.org/10.1016/j.ejpb.2010.03.002

    Article  CAS  PubMed  Google Scholar 

  52. Trindade RA, Kiyohara PK, Araujo PSD, da Costa MHB (2012) PLGA microspheres containing bee venom proteins for preventive immunotherapy. Int J Pharm 423(1):124–133. https://doi.org/10.1016/j.ijpharm.2011.02.027

    Article  CAS  PubMed  Google Scholar 

  53. D'Aurizio E, van Nostrum CF, van Steenbergen MJ, Sozio P, Siepmann F, Siepmann J, Hennink WE, Di Stefano A (2011) Preparation and characterization of poly(lactic-co-glycolic acid) microspheres loaded with a labile antiparkinson prodrug. Int J Pharm 409(1–2):289–296. https://doi.org/10.1016/j.ijpharm.2011.02.036

    Article  CAS  PubMed  Google Scholar 

  54. Shi XX, Ma XQ, Hou ML, Gao YE, Bai S, Xiao B, Xue P, Kang YJ, Xu ZG, Li CM (2017) pH-responsive unimolecular micelles based on amphiphilic star-like copolymer with high drug loading for effective drug delivery and cellular imaging. J Mater Chem 5(33). https://doi.org/10.1039/c7tb01477e

    Article  CAS  Google Scholar 

  55. Zhu JD, Zhou ZC, Yang CH, Kong DL, Wan Y, Wang Z (2011) Folate-conjugated amphiphilic star-shaped block copolymers as targeted nanocarriers. J Biomed Mater Res 97A(4):498–508. https://doi.org/10.1002/jbm.a.33071

    Article  CAS  Google Scholar 

  56. Gaignaux A, Reeff J, Siepmann F, Siepmann J, De Vriese C, Goole J, Amighi K (2012) Development and evaluation of sustained-release clonidine-loaded PLGA microparticles. Int J Pharm 437(1–2):20–28. https://doi.org/10.1016/j.ijpharm.2012.08.006

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This work was financed by National Natural Science Foundation of China (Grant No.51602001), Anhui Provincial Natural Science Foundation (1608085QE106) and Scientific Research Fund of Anhui Provincial Education Department (KJ2017A030, KJ2018A0038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wangyan Nie.

Ethics declarations

The work described has not been published previously and not under consideration for publication elsewhere, in whole or in part.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 465 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Ding, A., Zhou, Y. et al. Indometacin-loaded micelles based on star-shaped PLLA-TPGS copolymers: effect of arm numbers on drug delivery. Colloid Polym Sci 297, 1321–1330 (2019). https://doi.org/10.1007/s00396-019-04542-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-019-04542-1

Keywords

Navigation