Skip to main content
Log in

Biodegradable poly(N-isopropylacrylamide-co-N-maleylgelatin) hydrogels with adjustable swelling behavior

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

This study describes the detailed investigation on dynamic swelling of biodegradable network system poly(N-isopropylacrylamide-co-N-maleylgelatin) P(NIPAAm-co-N-MAGEL) prepared by N-isopropylacrylamide (NIPAAm) and N-maleylgelatin (MAGEL) with N,N′-methylene bis(acrylamide) (BIS) as a cross-linking agent. Effects of MAGEL content on the swelling behavior were investigated. The results showed that the swelling kinetics were dependent on the content of MAGEL and the maximum swelling rate was observed at 30% content of MAGEL. The swelling process follows second-order kinetics, and the mechanism of water transport is pseudo-Fickian type of diffusion. Swelling kinetics under different concentrations of NaCl was also studied. The swelling rate decreased with increasing the concentration of NaCl.

The swelling rate of P(NIPAAm-co-N-MAGEL) hydrogel can be tuned by MAGEL content and NaCl concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu H, Li MX, Ouyang C, Lu TJ, Li F, Xu F (2018) Biofriendly, stretrable, and reusable hydrogel electronics as wearable force sensors. Small 14:1801711–1801719

    Article  CAS  Google Scholar 

  2. Buchtová N, D’Orrlando A, Judeinstein P, Chauvet O, Weiss P, Le Bideau J (2018) Water dynamics in silanized hydroxypropyl methylcellulose based hydrogels designed for tissue engineering. Carbohydr Polym 22:401–408

    Google Scholar 

  3. Hasany M, Thakur A, Taebnia N, Kadumudi FB, Shahbazi MA, Pierchala MK, Mohanty S, Orive G, Andresen TL, Foldager CB, Yaghmaei S, Arpanaei A, Gaharwar AK, Mehrali M, Dolatshahi-Pirouz A (2018) Combinatorial screening of nanoclay-reinforced hydrogels: a glimpse of the “holy grail” in orthopedic stem cell therapy? ACS Appl Mater Interfaces 10:34924–34941

    Article  CAS  PubMed  Google Scholar 

  4. Culver HR, Clegg JR, Peppas NA (2017) Analyte-responsive hydrogels: intelligent materials for biosensing and drug delivery. Acc Chem Res 50:170–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Winnik FM (1990) Fluorescence studies of aqueous solutions of poly(N-isopropylacrylamide) below and above their LCST. Macromolecules 23:233–242

    Article  CAS  Google Scholar 

  6. Xia LW, Xie R, Ju XJ, Wang W, Chen QM, Chu LY (2013) Nano-structured smart hydrogels with rapid response and high elasticity. Nat Commun 4:2226–2236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Halperin A, Kroeger M, Winnik FM (2015) Poly(N-isopropylacrylamide) phase diagrams: fifty years of research. Angew Chem Int Ed 54:15342–15367

    Article  CAS  Google Scholar 

  8. Ashraf S, Park HK, Park H, Lee SH (2016) Snapshot of phase transition in thermoresponsive hydrogel PNIPAM: role in drug delivery and tissue engineering. Macromol Res 24:297–304

    Article  CAS  Google Scholar 

  9. Abdul Haq M, Su YL, Wang DJ (2017) Mechanical properties of PNIPAM based hydrogels: a review. Mater Sci Eng C 70:842–855

    Article  CAS  Google Scholar 

  10. Hasuike E, Akimoto AM, Kuroda R, Matsukawa K, Hiruta Y, Kanazawa H, Yoshida R (2017) Reversible conformational changes in the parallel type G-quadruplex structure inside a thermoresponsive hydrogel. Chem Commun 53:3142–3144

    Article  CAS  Google Scholar 

  11. Bae YH, Okano T, Kim SW (1990) Temperature dependence of swelling of crosslinked poly(N,N’-alkyl substituted acrylamides) in water. J Polym Sci B Polym Phys 28:923–936

    Article  CAS  Google Scholar 

  12. Lutz JF, Akdemir O, Hoth A (2006) Point by point comparison of two thermosensitive polymers exhibiting a similar LCST: is the age of poly(NIPAM) over? J Am Chem Soc 128:13046–13047

    Article  CAS  Google Scholar 

  13. Rzaev ZM, Dincer S, Pişkin E (2007) Functional copolymers of N-isopropylacrylamide for bioengineering applications. Prog Polym Sci 32:534–595

    Article  CAS  Google Scholar 

  14. Yu YQ, Li Z, Tian H (2007) Synthesis and characterization of thermoresponsive hydrogels cross-linked with acryloyloxyethylaminopolysuccinimide. Colloid Polym Sci 285:1553–1560

    Article  CAS  Google Scholar 

  15. Yu YQ, Xu Y, Ning H (2008) Swelling behaviors of thermoresponsive hydrogels cross-linked with acryloyloxyethylaminopolysuccinimide. Colloid Polym Sci 286:1165–1171

    Article  CAS  Google Scholar 

  16. Yu YQ, Li Y, Liu L (2011) Synthesis and characterization of pH- and thermoresponsive poly (N-isopropylacrylamide-co-itaconic acid) hydrogels crosslinked with N-maleyl chitosan. J Polym Res 18:283–291

    Article  CAS  Google Scholar 

  17. Zheng Y, Wang B, Liu M, Jiang K, Wang L, Yu YQ (2015) Synthesis and characterization of biodegradable thermoresponsive N-maleylgelatin-co-P(N-isopropylacrylamide) hydrogel cross-linked with bis-acrylamide for control release. Colloid Polym Sci 293:1615–1621

    Article  CAS  Google Scholar 

  18. Yu YQ, Lu QL, Yuan SC, Zhang RL, Wu ZM (2017) Properties of thermoresponsive N-maleyl gelatin-co-P(N-isopropylacrylamide) hydrogel with ultrahigh mechanical strength and self-recovery. J Polym Res 24:190–197

    Article  CAS  Google Scholar 

  19. Xin FF, Lu QL, Liu BX, Yuan SC, Zhang RL, Wu YM, Yu YQ (2018) Metal-ion-mediated hydrogels with thermo-responsiveness for smart windows. Eur Polym J 99:65–71

    Article  CAS  Google Scholar 

  20. Dong YX, Sigen A, Rodrigues M, Li XL, Kwon SH, Kosaric N, Khong S, Gao YS, Wang WX, Gurtner GC (2017) Injectable and tunable gelatin hydrogels enhance stem cell retention and improve cutaneous wound healing. Adv Funct Mater 27:1606619–1606630

    Article  CAS  Google Scholar 

  21. Salzmann P, Perrotta A, Coclite AM (2018) Different response kinetics to temperature and water vapor of acrylamide polymers obtained by initiated chemical vapor deposition. ACS Appl Mater Interfaces 10:6636–6645

    Article  CAS  PubMed  Google Scholar 

  22. Ogieglo W, Stenbock-Fermor A, Juraschek TM, Bogdanova Y, Benes N, Tsarkova LA (2018) Synergic swelling of interactive network support and block copolymer films during solvent vapor annealing. Langmuir 34:9950–9960

    Article  CAS  PubMed  Google Scholar 

  23. Lee E, Kim D, Yang SY, Ohd JW, Yoon J (2017) Photo-crosslinkable comb-type copolymers bearing a benzophenone moiety for the enhanced swelling kinetics of hydrogels. Polym Chem 8:6786–6794

    Article  CAS  Google Scholar 

  24. Bahtz J, Gunes DZ, Syrbe A, Mosca N, Fischer P, Windhab EJ (2016) Quantification of spontaneous W/O emulsification and its impact on the swelling kinetics of multiple W/O/W emulsions. Langmuir 32:5787–5795

    Article  CAS  PubMed  Google Scholar 

  25. Zırıh T, Orakdogen N (2016) Evaluation of pH/temperature double responsivity of copolymerized methacrylate-based networks: solvent diffusion analysis with adjustable swelling kinetics. Eur Polym J 75:371–387

    Article  CAS  Google Scholar 

  26. Ostrowska-Czubenko J, Gierszewska M, Pieróg M (2015) pH-responsive hydrogel membranes based on modified chitosan: water transport and kinetics of swelling. J Polym Res 22:153–164

    Article  CAS  Google Scholar 

  27. Zhang HJ, Pang XJ, Qi Y (2015) pH-sensitive graphene oxide/sodium alginate/ polyacrylamide nanocomposite semi-IPN hydrogel with improved mechanical strength. RSC Adv 5:89083–89091

    Article  CAS  Google Scholar 

  28. Krishna KA, Vishalakshi B (2017) Gellan gum-based novel composite hydrogel: evaluation as adsorbent for cationic dyes. J Appl Polym Sci 134:45527–45535

    Article  CAS  Google Scholar 

  29. Quintana JR, Valderruten NE, Katime I (1999) Synthesis and swelling kinetics of poly(dimethylaminoethyl acrylate methyl chloride quaternary-co-itaconic acid) hydrogels. Langmuir 15:4728–4730

    Article  CAS  Google Scholar 

  30. Francis S, Kumar M, Varshney L (2004) Radiation synthesis of superabsorbent poly(acrylic acid)-carrageenan hydrogels. Radiat Phys Chem 69:481–486

    Article  CAS  Google Scholar 

  31. Hermans JJ (1953) Flow properties of disperse systems. Wiley-Interscience, New York

    Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (No. 20876081) and the Science Foundation of Shandong Province (ZR2012BM015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueqin Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 485 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, F., Sui, M., Liu, X. et al. Biodegradable poly(N-isopropylacrylamide-co-N-maleylgelatin) hydrogels with adjustable swelling behavior. Colloid Polym Sci 297, 763–769 (2019). https://doi.org/10.1007/s00396-019-04498-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-019-04498-2

Keywords

Navigation