Skip to main content
Log in

Small DNA additives to polyelectrolyte multilayers promote formation of ultrafine gold nanoparticles with enhanced catalytic activity

  • Invited Article
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Polymer matrices are important host materials for nesting nanoparticles to be used in photonic, catalytic, environmental, and other applications. Several past studies suggested a unique role of DNA macromolecular template in the process of noble metal nanoparticle (NP) formation and growth; yet, no comparative studies with other polymeric matrices were performed. In order to address the effect of DNA on metal NP formation and catalytic performance, we synthesized Au NP in PSSNa/PAH/DNA multilayered films containing varied amounts of DNA and systematically studied morphology of multilayers, structure of gold NP formed in the multilayers, and catalytic properties of the NP. We found that decrease of Au NP size due to increase of DNA contents in the multilayers caused significant enhancement in the hybrid material catalytic properties.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lee J, Peng SM, Yang DY, Roh YH, Funabashi H, Park N, Rice EJ, Chen LW, Long R, Wu MM, Luo D (2012) A mechanical metamaterial made from a DNA hydrogel. Nat Nanotechnol 7(12):816–820

    Article  CAS  PubMed  Google Scholar 

  2. Yamada M, Sugiyama T (2008) Utilization of DNA-metal ion biomatrix as a relative humidity sensor. Polym J 40(4):327–331

    Article  CAS  Google Scholar 

  3. Shahbazi M-A, Bauleth-Ramos T, Santos HA (2018) DNA hydrogel assemblies: bridging synthesis principles to biomedical applications. Advanced Therapeutics 1(4):1800042

    Article  CAS  Google Scholar 

  4. Fernandez-Solis C, Kuroda Y, Zinchenko A, Murata S (2015) Uptake of aromatic compounds by DNA: toward the environmental application of DNA for cleaning water. Colloids Surf B 129:146–153

    Article  CAS  Google Scholar 

  5. Yamada M, Abe K (2014) Selective accumulation of rare earth metal and heavy metal ions by a DNA-inorganic hybrid material. Polym J 46(6):366–371

    Article  CAS  Google Scholar 

  6. Maeda Y, Zinchenko A, Lopatina LI, Sergeyev VG, Murata S (2013) Extraction of noble and rare-earth metals from aqueous solutions by DNA cross-linked hydrogels. Chem Plus Chem 78(7):619–622

    CAS  Google Scholar 

  7. Takahashi Y, Kondo K, Miyaji A, Watanabe Y, Fan QH, Honma T, Tanaka K (2014) Recovery and separation of rare earth elements using Salmon Milt. PLoS One 9(12):e114858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zinchenko A, Miwa Y, Lopatina LI, Sergeyev VG, Murata S (2014) DNA hydrogel as a template for synthesis of ultrasmall gold nanoparticles for catalytic applications. ACS Appl Mater Interfaces 6(5):3226–3232

    Article  CAS  PubMed  Google Scholar 

  9. Okay O (2011) DNA hydrogels: new functional soft materials. J Polym Sci Polym Phys 49(8):551–556

    Article  CAS  Google Scholar 

  10. Kwon YW, Lee CH, Choi DH, Jin JI (2009) Materials science of DNA. J Mater Chem 19(10):1353–1380

    Article  CAS  Google Scholar 

  11. Liu XD, Yamada M, Matsunaga M, Nishi N (2007) Functional materials derived from DNA. Adv Polym Sci 209:149–178

    CAS  Google Scholar 

  12. Watson SMD, Pike AR, Pate J, Houlton A, Horrocks BR (2014) DNA-templated nanowires: morphology and electrical conductivity. Nanoscale 6(8):4027–4037

    Article  CAS  Google Scholar 

  13. Zinchenko A (2012) Templating of inorganic nanomaterials by biomacromolecules and their assemblies. Polym Sci Ser C 54(1):80–87

    Article  CAS  Google Scholar 

  14. Rudiuk S, Venancio-Marques A, Hallais G, Baigl D (2013) Preparation of one- to four-branch silver nanostructures of various sizes by metallization of hybrid DNA-protein assemblies. Soft Matter 9(38):9146–9152

    Article  CAS  Google Scholar 

  15. Liu JF, Geng YL, Pound E, Gyawali S, Ashton JR, Hickey J, Woolley AT, Harb JN (2011) Metallization of branched DNA origami for Nanoelectronic circuit fabrication. ACS Nano 5(3):2240–2247

    Article  CAS  PubMed  Google Scholar 

  16. Zinchenko A, Sergeyev VG (2017) DNA-based materials as chemical reactors for synthesis of metal nanoparticles. Polym Sci Ser C 59(1):18–28

    Article  CAS  Google Scholar 

  17. Rakitin A, Aich P, Papadopoulos C, Kobzar Y, Vedeneev AS, Lee JS, Xu JM (2001) Metallic conduction through engineered DNA: DNA nanoelectronic building blocks. Phys Rev Lett 86(16):3670–3673

    Article  CAS  PubMed  Google Scholar 

  18. Häring M, Tautz M, Alegre-Requena JV, Saldías C, Díaz Díaz D (2018) Non-enzyme entrapping biohydrogels in catalysis. Tetrahedron Lett 59(35):3293–3306

    Article  CAS  Google Scholar 

  19. Zinchenko A, Nagahama C, Murata S (2016) Gold nanoparticles in DNA-based multilayer films: synthesis, size control, and influence of the multilayer structure on catalytic properties. Chem Nano Mat 2(2):125–132

    CAS  Google Scholar 

  20. Takeshima T, Sun L, Wang YQ, Yamada Y, Nishi N, Yonezawa T, Fugetsu B (2014) Salmon milt DNA as a template for the mass production of Ag nanoparticles. Polym J 46(1):36–41

    Article  CAS  Google Scholar 

  21. Decher G, Hong JD (1991) Buildup of ultrathin multilayer films by a self-assembly process .1. Consecutive adsorption of anionic and cationic bipolar Amphiphiles on charged surfaces. Makromol Chem Macromol Symp 46:321–327

    Article  CAS  Google Scholar 

  22. Decher G (1996) Layered nanoarchitectures via directed assembly of anionic and cationic molecules. Pergamon Press, Oxford

    Google Scholar 

  23. Sukhorukov GB, Donath E, Lichtenfeld H, Knippel E, Knippel M, Budde A, Mohwald H (1998) Layer-by-layer self assembly of polyelectrolytes on colloidal particles. Colloids Surf A 137(1–3):253–266

    Article  Google Scholar 

  24. An R, Jia Y, Wan B, Zhang Y, Dong P, Li J, Liang X (2014) Non-enzymatic depurination of nucleic acids: factors and mechanisms. PLoS One 9(12):e115950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Smith SB, Finzi L, Bustamante C (1992) Direct mechanical measurements of the elasticity of single DNA-molecules by using magnetic beads. Science 258(5085):1122–1126

    Article  CAS  PubMed  Google Scholar 

  26. Spiteri MN, Boue F, Lapp A, Cotton JP (1996) Persistence length for a PSSNa polyion in semidilute solution as a function of the ionic strength. Phys Rev Lett 77(26):5218–5220

    Article  CAS  PubMed  Google Scholar 

  27. Carnerero JM, Masuoka S, Baba H, Yoshikawa Y, Prado-Gotor R, Yoshikawa K (2018) Decorating a single giant DNA with gold nanoparticles. RSC Adv 8(47):26571–26579

    Article  CAS  Google Scholar 

  28. Jang NH (2002) The coordination chemistry of DNA nucleosides on gold nanoparticles as a probe by SERS. Bull Kor Chem Soc 23(12):1790–1800

    Article  CAS  Google Scholar 

  29. Berti L, Burley GA (2008) Nucleic acid and nucleotide-mediated synthesis of inorganic nanoparticles. Nat Nanotechnol 3(2):81–87

    Article  CAS  PubMed  Google Scholar 

  30. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346

    Article  CAS  Google Scholar 

  31. Zinchenko A., Che Y, Taniguchi S, Lopatina LI, Sergeyev VG, Murata S (2016) Metallization of DNA hydrogel: application of soft matter host for preparation and nesting of catalytic nanoparticles. J Nanopart Res 18(7):179

  32. Gu S, Wunder S, Lu Y, Ballauff M, Fenger R, Rademann K, Jaquet B, Zaccone A (2014) Kinetic analysis of the catalytic reduction of 4-Nitrophenol by metallic nanoparticles. J Phys Chem C 118(32):18618–18625

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Maruha Nichiro Holdings, Inc. (Japan) is gratefully acknowledged for free DNA samples extracted from salmon milt. We thank High Voltage Electron Microscope Laboratory at Institute of Materials and Systems for Sustainability, Nagoya University, for the assistance with transmission electron microscopy observations.

Funding

This work was supported by JSPS KAKENHI Grant Number 25620183 (Grant-in-Aid for Exploratory Research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly Zinchenko.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Birthday Message (from Dr. Zinchenko)

I would like to congratulate Prof. Vladimir Sergeyev on the occasion of his 60 years birthday and wish him further productive scientific career and great followers. Since the time we first met in ‘90s, I always remember myself and other young scientists around him to be inspired by his true interest in science and ability to find an original solution for virtually any scientific problem. I feel proud to be one of Prof. Sergeyev’s students and I am personally indebted to Prof. Sergeyev for his continuous encouragement and support.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagahama, C., Zinchenko, A. Small DNA additives to polyelectrolyte multilayers promote formation of ultrafine gold nanoparticles with enhanced catalytic activity. Colloid Polym Sci 297, 363–369 (2019). https://doi.org/10.1007/s00396-018-4432-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-018-4432-6

Keywords

Navigation