Skip to main content
Log in

Differences between ab initio emulsion and miniemulsion polymerization of styrene mediated by an alkenyl-functionalized amphiphilic RAFT agent

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

An alkenyl (butene)-functionalized amphiphilic macromolecular reversible addition fragmentation chain transfer (macro-RAFT) agent was designed as both surfactant and polymerization mediator for ab initio emulsion and miniemulsion polymerization of styrene (St), intending to synthesize polymer nanoparticles with alkenyl-enriched surfaces. However, the pendent alkenyl units exhibited unexpectedly higher reactivity in ab initio emulsion polymerization than they did in solution polymerization. Their copolymerization with St resulted in depletion of alkenyl groups, positive deviation of molecular weights, broad molecular weight distributions, and limiting conversions. Miniemulsion polymerization was superior to ab initio emulsion polymerization in its ability to prepare alkenyl-functionalized nanoparticles. Consumption of alkenyl groups happened, but only within the nucleation period. In spite of positive deviation of molecular weights and broad molecular weight distributions, the final particles were characteristics of alkenyl functionalities confined to the particle surfaces. Thus, PSt nanoparticles with alkenyl-enriched surface were obtained via miniemulsion polymerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tang DP, Cui YL, Chen GA (2013) Nanoparticle-based immunoassays in the biomedical field. Analyst 138:981–990

    Article  CAS  PubMed  Google Scholar 

  2. Kim ST, Saha K, Kim C, Rotello VM (2013) The role of surface functionality in determining nanoparticle cytotoxicity. Acc Chem Res 46:681–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Saha K, Agasti SS, Kim C, Li XN, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cho MH, Lee EJ, Son M, Lee JH, Yoo D, Kim JW, Park SW, Shin JS, Cheon J (2012) A magnetic switch for the control of cell death signalling in in vitro and in vivo systems. Nat Mater 11:1038–1043

    Article  CAS  PubMed  Google Scholar 

  5. Hyeon T, Lee JE, Lee N, Kim T, Kim J (2011) Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc Chem Res 44:893–902

    Article  CAS  PubMed  Google Scholar 

  6. Zhou GQ, Kang SG, Yang P, Liu Y, Sun BY, Huynh T, Meng H, Zhao LN, Xing GM, Chen CY (2012) Molecular mechanism of pancreatic tumor metastasis inhibition by Gd@C-82(OH)(22) and its implication for de novo design of nanomedicine. Proc Natl Acad Sci U S A 109:15431–15436

    Article  PubMed  PubMed Central  Google Scholar 

  7. Liu Z, Yang KL, Robinson JT, Tabakman SM, Dai HJ (2011) Carbon materials for drug delivery & cancer therapy. Mater Today 14:316–323

    Article  CAS  Google Scholar 

  8. Feng LY, Qu XG, Wu L (2013) New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Adv Mater 25:168–186

    Article  CAS  PubMed  Google Scholar 

  9. Elsabahy M, Wooley KL (2012) Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev 41:2545–2561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pichot C, Charleux B, Llauro MF (1993) Styrene-terminated poly(vinyl alcohol) macromonomers: 2. Free-radical (co)polymerization studies and application to the functionalization of latex particles. Polymer 34:4352–4359

    Article  Google Scholar 

  11. Margel S, Wiesel E (1984) Acrolein polymerization: monodisperse, homo, and hybrido microspheres, synthesis, mechanism, and reactions. J Polym Sci: Polym Chem Ed 22:145–158

    CAS  Google Scholar 

  12. Margel S (1984) Characterization and chemistry of polyaldehyde microspheres. J Polym Sci: Polym Chem Ed 22:3521–3533

    CAS  Google Scholar 

  13. Rembaum A, Chang M, Richards G, Li M (1984) Structure and immunological properties of polyacrolein formed by means of ionizing radiation and base catalysis. J Polym Sci: Polym Chem Ed 22:609–621

    CAS  Google Scholar 

  14. Yan CG, Zhang XM, Sun ZH (1990) Poly (styrene-co-acrolein) latex particles: co-polymerization and characteristics. J Appl Polym Sci 40:89–98

    Article  CAS  Google Scholar 

  15. Pichot C, Charleux B (1992) Radical-initiated copolymers of styrene and p-formylstyrene, 1. Solution copolymerization and characterization. Makromol Chem 193:187–203

    Article  Google Scholar 

  16. Charleux B, Pichot C, Fanget P (1992) Radical-initiated copolymers of styrene and p-formylstyrene, 2. Preparation and characterization of emulsifier-free copolymer latices. Makromol Chem 193:205–220

    Article  CAS  Google Scholar 

  17. Okubo M, Kondo Y, Takahashi M (1993) Production of submicron-size monodisperse polymer particles having aldehyde groups by seeded aldol condensation polymerization. Colloid Polym Sci 271:109–113

    Article  CAS  Google Scholar 

  18. Ceska GW (1974) Carboxyl-stabilized emulsion polymers. J Appl Polym Sci 18:2493–2499

    Article  CAS  Google Scholar 

  19. Sakota K, Okaya T (1977) Electrolyte stability of carboxylated latexes prepared by several polymerization processes. J Appl Polym Sci 21:1025–1034

    Article  CAS  Google Scholar 

  20. Sakota S, Okaya T (1977) Polymerization behavior and distribution of carboxyl groups in preparation of soap-free carboxylated polystyrene latexes. J Appl Polym Sci 21:1035–1043

    Article  CAS  Google Scholar 

  21. Pichot C, Delair T, Charreyre MT, Razafindrakoto V, Wren L (1994) Radically initiated copolymers of styrene with 4-vinylbenzylamine and its trifluoroacetamide derivative, 2. Preparation of latex particles bearing amino groups. Macromol Chem Phys 195:2153–2167

    Article  Google Scholar 

  22. Delair T, Marguet V, Pichot C, Mandrand B (1994) Synthesis and characterization of cationic amino functionalized polystyrene latexes. Colloid Polym Sci 272:962–970

    Article  CAS  Google Scholar 

  23. Ganachaud F, Mouterde G, Delair T, Elaissari A, Pichot C (1995) Preparation and characterization of cationic polystyrene latex particles of different arninated surface charges. Polym Adv Technol 6:480–488

    Article  CAS  Google Scholar 

  24. Kling JA, Ploehn HJ (1995) Synthesis and characterization of epoxy-functional. J Polym Sci Part A: Polym Chem 33:1107–1118

    Article  CAS  Google Scholar 

  25. Delair T, Pichot C, Mandrand B (1994) Synthesis and characterization of cationic latex particles bearing sulfhydryl groups and their use in the immobilization of Fab antibody fragments (1). Colloid Polym Sci 272:72–81

    Article  CAS  Google Scholar 

  26. Sarobe J, Forcada J (1996) Synthesis of core-shell type polystyrene monodisperse particles with chloromethyl groups. Colloid Polym Sci 274:8–13

    Article  CAS  Google Scholar 

  27. Okubo M, Iwasaki Y, Yamamoto Y (1992) Preparation of micron-size monodisperse polymer microspheres having cationic groups. Colloid Polym Sci 270:733–737

    Article  CAS  Google Scholar 

  28. Okubo M, Nakagawa T (1992) Preparation of micron-size monodisperse polymer particles having highly crosslinked structures and vinyl groups by seeded polymerization of divinylbenzene using the dynamic swelling method. Colloid Polym Sci 270:853–858

    Article  CAS  Google Scholar 

  29. David RLA, Kornfield JA (2008) Facile, efficient routes to diverse protected thiols and to their deprotection and addition to create functional polymers by thiol-ene coupling. Macromolecules 41:1151–1161

    Article  CAS  Google Scholar 

  30. Hawker CJ, Campos LM, Meinel I, Guino RG, Schierhorn M, Gupta N, Stucky GD (2008) Highly versatile and robust materials for soft imprint lithography based on thiol-ene click chemistry. Adv Mater 20:3728–3733

    Article  CAS  Google Scholar 

  31. Carioscia JA, Schneidewind L, Ely R, Feeser C, Cramer N, Bowman CN (2007) Thiol–norbornene materials: approaches to develop high Tg thiol–ene polymers. J Polym Sci Part A: Polym Chem 45:5686–5696

    Article  CAS  Google Scholar 

  32. Gress A, Volkel A, Schlaad H (2007) Thio-click modification of poly [2-(3-butenyl)-2-oxazoline]. Macromolecules 40:7928–7933

    Article  CAS  Google Scholar 

  33. Podešva J, Hrubý M, Spevácek J, Hrdlicková M, Netopilík M (2008) A new chemical modification of liquid polybutadienes: radical addition of aliphatic aldehydes onto pending vinyl groups. J Polym Sci Part A: Polym Chem 46:3919–3925

    Article  CAS  Google Scholar 

  34. Ma J, Cheng C, Sun GR, Wooley KL (2008) Well-defined polymers bearing pend-ent alkene functionalities via selective RAFT polymerization. Macromolecules 41:9080–9089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Larock RC, Wiley J (1999) Comprehensive organic transformations, a guide to functional group preparations—second edition. Wiley-VCH, New York

    Google Scholar 

  36. Li Y, Yang C, Khan M, Liu SQ, Hedrick JL, Yang YY, Ee PLR (2012) Nanostructured PEG-based hydrogels with tunable physical properties for gene delivery to human mesenchymal stem cells. Biomaterials 33:6533–6541

    Article  CAS  PubMed  Google Scholar 

  37. Kai K, Kan CY, Du Y (2005) Synthesis and properties of soap-free poly(methyl methacrylate-ethyl acrylate-methacrylic acid) latex particles prepared by seeded emulsion polymerization. Eur Polym J 41:439–445

    Article  CAS  Google Scholar 

  38. Nicolas J, Nicolas J, Bensaid F, Desmaele D, Grogna M, Detrembleur C, Andrieux K, Couvreur P (2008) Synthesis of highly functionalized poly(alkyl cyanoacrylate) nanoparticles by means of click chemistry. Macromolecules 41:8418–8428

    Article  CAS  Google Scholar 

  39. Li NW, Binder WH (2011) Click-chemistry for nanoparticle-modification. J Mater Chem 21:16717–16734

    Article  CAS  Google Scholar 

  40. Haruma K (2000) Functional polymer microspheres. Prog Polym Sci 25:1171–1210

    Article  Google Scholar 

  41. Goldmann AS, Walther A, Nebhani L, Joso R, Ernst D, Loos K, Barner-Kowollik C, Barner L, Müller AHE (2009) Surface modification of poly(divinylbenzene) microspheres via thiol−ene chemistry and alkyne−azide click reactions. Macromolecules 42:3707–3714

    Article  CAS  Google Scholar 

  42. Yang L, Sun P, Yang H, Qi DM, Wu MH (2014) A feasible method of preparation of block copolymer latex films with stable microphase separation structures. Prog Polym Sci 77:305–314

    CAS  Google Scholar 

  43. Ferguson CJ, Hughe RJ, Pham BTT, Hawket BS, Gilber RG, Serelis AK, Such CH (2002) Effective ab initio emulsion polymerization under RAFT control. Macromolecules 35:9243–9245

    Article  CAS  Google Scholar 

  44. Sprong E, Bruyn HD, Such CH, Hawkett BS (2009) Control of particle morphology in ab initio RAFT mediated emulsion polymerization. Aust J Chem 62:1501–1506

    Article  CAS  Google Scholar 

  45. Wang XG, Luo YW, Li BG, Zhu SP (2009) Ab initio batch emulsion RAFT polymerization of styrene mediated by poly(acrylic acid-b-styrene) trithiocarbonate. Macromolecules 42:207–212

    Google Scholar 

  46. Rieger J, Osterwinter G, Bui CO, Stoffelbach F, Charleux B (2009) Surfactant-free controlled/living radical emulsion (co)polymerization of n-butyl acrylate and methyl methacrylate via RAFT using amphiphilic poly(ethylene oxide)-based trithiocarbonate chain transfer agents. Macromolecules 42:5518–5525

    Article  CAS  Google Scholar 

  47. Urbani CN, Monteiro MJ (2009) RAFT-mediated emulsion polymerization of styrene in water using a reactive polymer nanoreactor. Aust J Chem 62:1528–1532

    Article  CAS  Google Scholar 

  48. Yang L, Xu JQ, Sun P, Shen YF, Luo YW (2014) Ab initio emulsion and miniemulsion polymerization of styrene mediated by a cyclohexenyl-functionalized amphiphilic RAFT agent. Ind Eng Chem Res 53:11259–11268

    Article  CAS  Google Scholar 

  49. Breed DR, Thibault R, Xie F, Wang Q, Hawker CJ, Pine DJ (2009) Functionalization of polymer microspheres using click chemistry. Langmuir 25:4370–4376

    Article  CAS  PubMed  Google Scholar 

  50. Lowe AB (2010) Thiol-ene “click” reactions and recent applications in polymer and materials synthesis. Poly Chem 1:17–36

    Article  CAS  Google Scholar 

  51. Hoyle CE, Lee TY, Roper T (2004) Thiol–enes: chemistry of the past with promise for the future. J Polym Sci Part A: Polym Chem 42:5301–5338

    Article  CAS  Google Scholar 

  52. Sprong E, Leswin JST, Lamb DJ, Ferguson CJ, Hawkett BS, Pham BTT, Nguyen D, Such CH, Serelis AK, Gilbert RG (2006) Molecular watchmaking: ab initio emulsion polymerization by RAFT-controlled self-assembly. Macromol Symp 231:84–93

    Article  CAS  Google Scholar 

  53. Dong ZM, Liu XH, Lin Y, Li SH (2008) Branched polystyrene with abundant pendant vinyl functional groups from asymmetric divinyl monomer. J Polym Sci Part A: Polym Chem 18:6023–6034

    Article  CAS  Google Scholar 

  54. Yang L, Luo Y, Li B (2006) Reversible addition fragmentation transfer (RAFT) polymerization of styrene in a miniemulsion: a mechanistic investigation. Polymer 47:751–762

    Article  CAS  Google Scholar 

  55. Chen SA, Lee ST (1992) Limiting conversion for systems of emulsifier-free emulsion polymerization of styrene. Macromolecules 25:1530–1533

    Article  CAS  Google Scholar 

  56. Gilbert RG (1995) Emulsion polymerization: a mechanistic approach. Academic Press, London, pp 70–72

    Google Scholar 

  57. Luo YW, Tsavalas J, Schork FJ (2001) Theoretical aspects of particle swelling in living free radical miniemulsion polymerization. Macromolecules 34:5501–5507

    Article  CAS  Google Scholar 

  58. DiPaola-Baranyi G, Guillet JE (1978) Estimation of polymer solubility parameters by gas chromatography. Macromolecules 11:228–235

    Article  CAS  Google Scholar 

  59. Odian G (2004) Principles of polymerization4th edn. Wiley, New York, pp 466–487

    Book  Google Scholar 

  60. Brandrup J, Immergut EH, Grulke EA (1998) Free radical copolymerization reactivity ratios. Polymer handbook4th edn. Wiley, New Yok, pp II309–II318

    Google Scholar 

  61. Ma J, Cheng C, Wooley KL (2009) Cycloalkenyl-functionalized polymers and block copolymers: syntheses via selective RAFT polymerizations and demonstration of their versatile reactivity. Macromolecules 42:1565–1573

    Article  CAS  Google Scholar 

  62. Monteiro MJ (2010) Nanoreactors for polymerizations and organic reactions. Macromolecules 43:1159–1168

    Article  CAS  Google Scholar 

  63. Bechthold N, Landfester K (2000) Kinetics of Miniemulsion polymerization as revealed by calorimetry. Macromolecules 33:4682–4689

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project is financially supported by Zhejiang Provincial Natural Science Foundation of China (LY18E030008, LY16B060006, LY15E030013 and LY12E03008), the Science and Technology Department of Zhejiang Province (2016C31074, 2017C31033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 1615 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Yin, J., Zhao, Q. et al. Differences between ab initio emulsion and miniemulsion polymerization of styrene mediated by an alkenyl-functionalized amphiphilic RAFT agent. Colloid Polym Sci 296, 1615–1625 (2018). https://doi.org/10.1007/s00396-018-4386-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-018-4386-8

Keywords

Navigation