Skip to main content
Log in

An ultrosensitive biosensor based on electroactive nanoparticles self-assembled from 3-thiophenecarboxylic acid-modified starch

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A kind of electroactive nanoparticles (NPs) was prepared in solution by self-assembling amphiphilic 3-thiophenecarboxylic acid-modified starch (TPCA-St), which was synthesized through esterification reaction. By casting TPCA-St NPs on the surface of gold electrode and subsequent electropolymerization of the thiophene moieties in NP film, the electroconductive TPCA-St NP-based film was formed. After horseradish peroxidase and Nafion were sequentially cast on the film surface, a biosensor was successfully prepared. The prepared biosensor showed high sensitivity for H2O2 detection. The linear range from 1 × 10−10 to 1 × 10−5 mol L−1 with a detection limit of 3 × 10−11 mol L−1 was obtained for H2O2 sensing. The biosensor also showed good repeatability and stability, and it has been successfully used to sense H2O2 in commercial disinfector with satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Corre DL, Bras J, Dufresne A (2010) Starch nanoparticles: a review. Biomacromolecules 11:1139–1153

    Article  CAS  PubMed  Google Scholar 

  2. Thiele C, Auerbach D, Jung G, Qiong L, Schneider M, Wenz G (2011) Nanoparticles of anionic starch and cationic cyclodextrin derivatives for the targeted delivery of drugs. Polym Chem 2:209–215

    Article  CAS  Google Scholar 

  3. Dandekar P, Jain R, Stauner T, Loretz B, Koch M, Wenz G, Lehr CM (2012) A hydrophobic starch polymer for nanoparticle-mediated delivery of docetaxel. Macromol Biosci 12:184–194

    Article  CAS  PubMed  Google Scholar 

  4. Simi CK, Abraham TE (2007) Hydrophobic grafted and cross-linked starch nanoparticles for drug delivery. Bioprocess Biosyst Eng 30:173–180

    Article  CAS  PubMed  Google Scholar 

  5. Goode JA, Rushworth JVH, Millner PA (2015) Biosensor regeneration: a review of common techniques and outcomes. Langmuir 31:6267–6276

    Article  CAS  PubMed  Google Scholar 

  6. Songa EA, Okonkwo JO (2016) Recent approaches to improving selectivity and sensitivity of enzyme-based biosensors for organophosphorus pesticides: a review. Talanta 155:289–304

    Article  CAS  PubMed  Google Scholar 

  7. Bhakta SA, Evans E, Benavidez TE, Garcia CD (2015) Protein adsorption onto nanomaterials for the development of biosensors and analytical devices: a review. Anal Chim Acta 872:7–25

    Article  CAS  PubMed  Google Scholar 

  8. Du D, Ding JW, Cai J, Zhang AD (2007) Determination of carbaryl pesticide using amperometric acetylcholinesterase sensor formed by electrochemically deposited chitosan. Colloids Surf B: Biointerfaces 58:145–150

    Article  CAS  PubMed  Google Scholar 

  9. Jahanbakhshi M, Habibi B (2016) A novel and facile synthesis of carbon quantum dots via salep hydrothermal treatment as the silver nanoparticles support: application to electroanalytical determination of H2O2 in fetal bovine serum. Biosens Bioelectron 81:143–150

    Article  CAS  PubMed  Google Scholar 

  10. Sun YX, Zhang JT, Huang SW, Wang SF (2007) Hydrogen peroxide biosensor based on the bioelectrocatalysis of horseradish peroxidase incorporated in a new hydrogel film. Sensors Actuators B Chem 124:494–500

    Article  CAS  Google Scholar 

  11. Li J, Lin XQ (2007) Glucose biosensor based on immobilization of glucose oxidase in poly(o-aminophenol) film on polypyrrole-Pt nanocomposite modified glassy carbon electrode. Biosens Bioelectron 22:2898–2905

    Article  CAS  PubMed  Google Scholar 

  12. Evans SAG, Elliott JM, Andrews LM, Bartlett PN, Doyle PJ, Denuault G (2002) Detection of hydrogen peroxide at mesoporous platinum microelectrodes. Anal Chem 74:1322–1326

    Article  CAS  PubMed  Google Scholar 

  13. Delvaux M, Walcarius A, Demoustier-Champagne S (2004) Electrocatalytic H2O2 amperometric detection using gold nanotube electrode ensembles. Anal Chim Acta 525:221–230

    Article  CAS  Google Scholar 

  14. Martín M, Salazar P, Villalonga R, Campuzano S, Pingarrónd JM, González-Mora JL (2014) Preparation of core–shell Fe3O4@poly(dopamine) magnetic nanoparticles for biosensor construction. J Mater Chem B 2:739–746

    Article  Google Scholar 

  15. Araque E, Arenas CB, Gamella M, Reviejo J, Villalonga R, Pingarrón JM (2014) Graphene-polyamidoamine dendrimer–Pt nanoparticles hybrid nanomaterial for the preparation of mediatorless enzyme biosensor. J Electroanal Chem 717-718:96–102

    Article  CAS  Google Scholar 

  16. Miao Y, Wen Y, Dong J, Zhou WX, Zhang ZR, Yang HF (2011) Botanical micelle and its application for direct electrochemical biosensor. Biosens Bioelectron 26:2994–2999

    Article  CAS  PubMed  Google Scholar 

  17. Gorton L, Lindgren A, Larsson T, Munteanu FD, Ruzgas T, Gazaryan I (1999) Direct electron transfer between heme-containing enzymes and electrodes as basis for third generation biosensors. Anal Chim Acta 400:91–108

    Article  CAS  Google Scholar 

  18. Jia JB, Wang BQ, Wu AG, Cheng GJ, Li Z, Dong SJ (2002) A method to construct a third-generation horseradish peroxidase biosensor: self-assembling gold nanoparticles to three-dimensional sol-gel network. Anal Chem 74:2217–2223

    Article  CAS  PubMed  Google Scholar 

  19. Yang YQ, Luo J, Liu R, Liu JK, Jiang JQ, Liu XY (2011) Glucose sensors based on electrodeposition of molecularly imprinted polymeric micelles: a novel strategy for MIP sensors. Biosens Bioelectron 26:2607–2612

    Article  CAS  PubMed  Google Scholar 

  20. Zhang RL, Xu S, Luo J, Liu XY (2015) Molecularly imprinted photo-sensitive polyglutamic acid nanoparticles for electrochemical sensing of hemoglobin. Microchim Acta 182:175–183

    Article  CAS  Google Scholar 

  21. Zhang RL, Sun JD, Luo J, Xu S, Liu XY (2014) Preparation of photo-sensitive poly(γ-glutamic acid) nanoparticles and application for immobilizing hemoglobin on electrode. Colloid Polym Sci 292:2295–2302

    Article  CAS  Google Scholar 

  22. Zhang RL, Jiang C, Fan XX, Yang RC, Sun YY, Zhang CG (2018) A gold electrode modified with a nanoparticulate film composed of a conducting copolymer for ultrasensitive voltammetric sensing of hydrogen peroxide. Microchim Acta 185:58–66

    Article  CAS  Google Scholar 

  23. Zhang L, Eisenberg A (1995) Multiple morphologies of ‘crew-cut’ aggregates of polystyrene-b-poly (acrylic acid) block copolymers. Science 268:1728–1731

    Article  CAS  PubMed  Google Scholar 

  24. Zhang RL, Xu S, Luo J, Shi DJ, Liu C, Liu XY (2014) One-pot green synthesis of nanohybrid structures: gold nanoparticles in poly(γ-glutamic acid) copolymer nanoparticles. RSC Adv 4:25106–25113

    Article  CAS  Google Scholar 

  25. Xu J, Bai HY, Yi CL, Luo J, Yang C, Xia WS, Liu XY (2011) Self-assembly behavior between native hyaluronan and styrylpyridinium in aqueous solution. Carbohydr Polym 86:678–683

    Article  CAS  Google Scholar 

  26. Luo J, Ma Q, Wei W, Zhu Y, Liu R, Liu XY (2016) Synthesis of water-dispersible molecularly imprinted electroactive nanoparticles for the sensitive and selective paracetamol detection. ACS Appl Mater Interfaces 8:21028–21038

    Article  CAS  PubMed  Google Scholar 

  27. Namazi H, Fathi F, Dadkhah A (2011) Hydrophobically modified starch using long-chain fatty acids for preparation of nanosized starch particles. Scientia Iranica 18:439–445

    CAS  Google Scholar 

  28. Zhang L, Shen H, Eisenberg A (1997) Phase separation behavior and crew-cut micelle formation of polystyrene-b-poly (acrylic acid) copolymers in solutions. Macromolecules 30:1001–1011

    Article  CAS  Google Scholar 

  29. Zhang CG, Yang SH, Zhu Y, Zhang RL, Liu XY (2015) Formation of bowl-shaped nanoparticles by self-assembly of cinnamic acid-modified dextran. Carbohydr Polym 133:637–643

    Article  CAS  PubMed  Google Scholar 

  30. Pang YH, Li XY, Ding HL, Shi GY, Jin LT (2007) Electropolymerization of high quality electrochromic poly(3-alkyl-thiophene)s via a room temperature ionic liquid. Electrochim Acta 52:6172–6177

    Article  CAS  Google Scholar 

  31. Prodromidis MI (2010) Impedimetric immunosensors-a review. Electrochim Acta 55:4227–4233

    Article  CAS  Google Scholar 

  32. Zhu Y, Lu S, Manohari AG, Dong XX, Chen F, Xu W, Shi ZL, Xu CX (2017) Polydopamine interconnected graphene quantum dots and gold nanoparticles for enzymeless H2O2 detection. J Electroanal Chem 796:75–81

    Article  CAS  Google Scholar 

  33. Chen QG, Lin TR, Huang JL, Chen Y, Guo LQ, Fu FF (2018) Colorimetric detection of residual hydrogen peroxide in soaked food based on au@ag nanorods. Anal Methods 10:504–507

    Article  CAS  Google Scholar 

  34. Song MR, Wang JL, Chen BY, Wang L (2017) A facile, nonreactive hydrogen peroxide (H2O2) detection method enabled by ion chromatography with UV detector. Anal Chem 89:11537–11544

    Article  CAS  PubMed  Google Scholar 

  35. Kitte SA, Gao WY, Zholudov YT, Qi LM, Nsabimana A, Liu ZY, Xu GB (2017) Stainless steel electrode for sensitive luminol electrochemiluminescent detection of H2O2, glucose, and glucose oxidase activity. Anal Chem 89:9864–9869

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (NSFC 21504001, 51703001, 51572004), the foundation of Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, Jiangnan University (JDSJ2015-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongli Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(PDF 432 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Jin, Z., Zhang, C. et al. An ultrosensitive biosensor based on electroactive nanoparticles self-assembled from 3-thiophenecarboxylic acid-modified starch. Colloid Polym Sci 296, 1365–1372 (2018). https://doi.org/10.1007/s00396-018-4359-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-018-4359-y

Keywords

Navigation