Skip to main content
Log in

Adsorption and electrochemical behavior of Cyt-c on carbon nanotubes/TiO2 nanocomposite films fabricated at various annealing temperatures

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Multi-walled carbon nanotubes (MWCNTs) were incorporated into the active layer of mesoporous TiO2 films resulting in MWCNTs-TiO2 nanocomposites with improved electrical conductivity. These MWCNTs-TiO2 nanocomposite films were prepared by a direct mixing method and the “doctor blade” technique. The films were sintered at various annealing temperatures (300, 350, 400, and 450 °C) in order to examine the effect of annealing temperature to the morphology and electrochemical activity of the films. The presence of anatase TiO2 and MWCNTs has been confirmed by X-ray diffraction (XRD), field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy, while conductivity and electrochemical properties of the nanocomposite MWCNΤs-TiO2 films were examined via cyclic voltammetry (CV) and spectroelectrochemistry. After successful protein immobilization (Cyt-c), the electrochemical and spectroelectrochemical behavior of these hybrid electrodes (Cyt-c/MWCNTs-TiO2) was examined in detail and particularly the effect of MWCNTs on the interfacial electron transfer between the film electrode and the adsorbed protein molecules.

Schematic illustration of MWCNTs-TiO2 nanocomposite films used for Cyt-c immobilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Xiao Y, Potolsky F, Katz E, Hainfeld JF, Willner I (2003) Plugging into enzymes: nanowiring of redox enzymes by a redox nanoparticle. Science 299:1877–1881

    Article  CAS  PubMed  Google Scholar 

  2. Armstrong FA, Hill HAO, Walton NJ (1988) Direct electrochemistry of redox proteins. Acc Chem Res 21:407–413

    Article  CAS  Google Scholar 

  3. Zhao S, Zhang K, Sun Y, Sun C (2006) Hemoglobin/colloidal silver nanoparticles immobilized in titania sol-gel film on glassy carbon electrode: direct electrochemistry and electrocatalysis. Bioelectrochemistry 69:10–15

    Article  CAS  PubMed  Google Scholar 

  4. Guo C, Hu F, Li CM, Shen PK (2008) Direct electrochemistry of haemoglobin on carbonized titania nanotubes and its application in a sensitive reagentless hydrogen peroxide biosensors. Biosens Bioelectron 24:819–824

    Article  CAS  Google Scholar 

  5. Rilkin A, Katz E, Willner I, Stockerand A, Buckmann AF (1995) Improving enzyme-electrode contacts by redox modifications of cofactors. Nature 376:672–675

    Article  Google Scholar 

  6. Zhang L, Tian D-B, Zhu J-J (2008) Direct electrochemistry and electrochemical catalysis of myoglobin-TiO2 coated multiwalled carbon nanotubes modified electrode. Bioelectrochemistry 74:157–163

    Article  CAS  PubMed  Google Scholar 

  7. Solanki PR, Kaushik A, Agrawal VV, Malhorta B (2011) Nanostructured metal-oxide based biosensors. NPG Asia Mater 3:17–24

    Article  Google Scholar 

  8. Topoglidis E, Campbell CJ, Cass AEG, Durrant JR (2001) Factors that affect protein adsorption on nanostructured titania films. A novel spectroelectrochemical application to sensing. Langmuir 17:7899–7906

    Article  CAS  Google Scholar 

  9. Li Q, Luo G, Feng J (2001) Direct electron transfer for heme proteins assembled on nanocrystalline TiO2 film. Electroanalysis 13:359–363

    Article  CAS  Google Scholar 

  10. Renault C, Balland V, Martinez-Ferrero E, Nicole L, Sanchez C, Limoges B (2009) Highly ordered transparent mesoporous TiO2 thin films: an attractive matrix for efficient immobilization and spectroelectrochemical characterization of cytochrome c. Chem Commun (48):7494–7496

  11. Yang DH, Takahara N, Mizutani N, Lee SW, Kunitake T (2006) Fabrication of TiO2 and cytochrome c alternate ultrathin films via a gas-phase surface sol–gel process. Chem Lett 35:990–991

    Article  CAS  Google Scholar 

  12. McKenzie KJ, Marken F (2003) Accumulation and reactivity of the redox protein cytochrome c in mesoporous films of phytate. Langmuir 19:4327–4331

    Article  CAS  Google Scholar 

  13. Renault C, Nicole L, Sanchez C, Costentin C, Balland V, Limoges B (2015) Unraveling the charge transfer/electron transport in mesoporous semiconductive TiO2 films by voltabsorptometry. Phys Chem Chem Phys 17:10592–10607

    Article  CAS  PubMed  Google Scholar 

  14. O’Regan BC, Durrant JR (2009) Kinetic and energetic paradigms for dye-sensitized solar cells: moving from the ideal to the real. Acc Chem Res 42:1799–1808

    Article  CAS  PubMed  Google Scholar 

  15. Vlachopoulos N, Nissfolk J, Moller M, Briancon A, Corr D, Grave C, Leyland N, Mesmer R, Pichot F, Ryan M, Boschloo G, Hagfeldt A (2008) Electrochemical aspects of display technology based on nanostructured titanium dioxide with attached viologen chromophores. Electrochim Acta 53:4065–4071

    Article  CAS  Google Scholar 

  16. Rahman MM, Saleh Ahammad AJ, Jin J-H, Ahn SJ, Lee J-J (2010) A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors 10:4855–4886

    Article  CAS  PubMed  Google Scholar 

  17. Kim J-H, Zhu K, Yan Y, Perkins CL, Frank AJ (2010) Microstructure and pseudocapacitive properties of electrodes constructed of oriented NiO-TiO2 nanotube arrays. Nano Lett 10:4099–4104

    Article  CAS  PubMed  Google Scholar 

  18. Chen C, Conception JJ, Jurss JW, Meyer TJ (2009) Single-site, catalytic water oxidation on oxide surfaces. J Am Chem Soc 131:15580–15581

    Article  CAS  PubMed  Google Scholar 

  19. Topoglidis E, Lutz T, Durrant JR, Palomares E (2008) Interfacial electron transfer on cytochrome-c sensitized conformally coated mesoporous TiO2 films. Bioelectrochemistry 74:142–148

    Article  CAS  PubMed  Google Scholar 

  20. Tasviri M, Rafie-Pour H-A, Ghourchian H, Gholami MR (2011) Amine functionalized TiO2-carbon nanotube composite: synthesis, characterization and application to glucose sensing. Appl Nanosci 1:189–195

    Article  CAS  Google Scholar 

  21. Xie Y, Heo SH, Yoo SH, Ali G, Cho SO (2010) Synthesis and photocatalytic activity of anatase TiO2 nanoparticles coated carbon nanotubes. Nanoscale Res Lett 5:603–607

    Article  CAS  Google Scholar 

  22. Li H, Li M, Guo W, Di H, Fang C, Yang B (2014) Electrochemical application of titanium dioxide nanoparticle/gold nanoparticle/multiwalled carbon nanotube nanocomposites for nonenzymatic detection of ascorbic acid. J Solid State Electrochem 18:477–485

    Article  CAS  Google Scholar 

  23. Liu M, Zhao G, Tang Y, Shi H, Yang N (2013) Direct electrochemistry of hemoglobin on vertically aligned carbon hybrid TiO2 nanotubes and its highly sensitive biosensor performance. Chin J Chem 31:215–220

    Article  CAS  Google Scholar 

  24. Xie Y, Zhou L, Huang H (2007) Bioelectrocatalytic application of titania nanotube array for molecule detection. Biosens Bioelectron 22:2812–2818

    Article  CAS  PubMed  Google Scholar 

  25. Zhao G, Lei Y, Zhang Y, Li H, Liu M (2008) Growth and favorable bioelectrocatalysis of multishaped nanocrystal Au in vertically aligned TiO2 nanotubes for hemoprotein. J Phys Chem C 112:14786–14795

    Article  CAS  Google Scholar 

  26. Wu Y, Zhang J, Xiao L, Chen F (2010) Properties of carbon and iron modified TiO2 photocatalyst synthesized at low temperature and photodegradation of acid orange 7 under visible light. Appl Surf Sci 256:4260–4268

    Article  CAS  Google Scholar 

  27. Dimitrov AT, Tomova A, Grozdanov A, Popovski O, Paunovic P (2013) Electrochemical production, characterization and application of MWCNTs. J Solid State Electrochem 17:399–407

    Article  CAS  Google Scholar 

  28. Zhang W-D, Xu B, Jiang L-C (2010) Functional hybrid materials on carbon nanotubes and metal oxides. J Mater Chem 20:6383–6391

    Article  CAS  Google Scholar 

  29. Sawatsuk T, Chindaduang A, Sae-kung C, Pratontep S, Tumcharern G (2009) Dye sensitized solar cells based on TiO2-MWCNTs composite electrodes: performance improvement and their mechanisms. Diam Relat Mater 18:524–527

    Article  CAS  Google Scholar 

  30. Shao X, Lu W, Zhang R, Pan F (2013) Enhanced photocatalytic activity of TiO2-C hybrid aerogels for methylene blue degradation. Sci Rep 3

  31. Jarernboom W, Pimanpang S, Maensiri S, Swatsitang E, Amornkitbamrung V (2009) Effects of multiwall carbon nanotubes in reducing microcrack formation on electrophoretically deposited TiO2 film. J Alloys Compd 476:840–846

    Article  CAS  Google Scholar 

  32. Bao S-J, Li CM, Zang J-F, Cui X-Q, Qiao Y, Guo J (2008) New nanostructured TiO2 for direct electrochemistry and glucose sensor applications. Adv Funct Mater 18:591–599

    Article  CAS  Google Scholar 

  33. Khamwannah J, Noh SY, Frandsen C, Zhang Y, Kim H, Kong SD, Jin S (2012) Nanocomposites of TiO2 and double-walled carbon nanotubes for improved dye-sensitized solar cells. J Renew Sustain Energy 4:023116

    Article  CAS  Google Scholar 

  34. Hwang H-J, Kim H-S (2014) TiO2/silver/carbon nanotube nanocomposite working electrodes for high performance dye-sensitized solar cells. J Compos Mater 48:1679–1690

    Article  CAS  Google Scholar 

  35. Fan X, Wang T, Guo Y, Gong H, Xue H, Guo H, Gao B, He J (2017) Synthesis of ordered mesoporous TiO2-carbon-CNTs nanocomposite and its efficient photoelectrocatalytic methanol oxidation performance. Microporous Mesoporous Mater 240:1–8

    Article  CAS  Google Scholar 

  36. Dembele KT, Selopal GS, Soldano C, Soldano C, Nechache R, Rimada JC, Concina I, Sberveglieri G, Rosei F, Vomiero A (2013) Hybrid carbon nanotubes-TiO2 photoanodes for high efficiency dye-sensitized solar cells. J Phys Chem C 117:14510–14517

    Article  CAS  Google Scholar 

  37. Zhou N, Yang T, Jiao K, Song C-X (2010) Electrochemical deoxyribonucleic acid biosensor based on multiwalled carbon nanotubes/Ag-TiO2 composite film for label-free phosphinothricin acetyltranferase gene detection by electrochemical impedance spectroscopy. Chin J Anal Chem 38:301–306

    Article  CAS  Google Scholar 

  38. Hossain A, Sarker EDR, Diba ZR, Mithun JM, Azad AK, Siddiquey IA, Rachman MM, Uddin J, Uddin N (2018) Synthesis of Fe- or Ag-doped TiO2–MWCNT nanocomposite thin films and their visible-light-induced catalysis of dye degradation and antibacterial activity. Res Chem Intermed 44:2667–2683

    Article  CAS  Google Scholar 

  39. Delekar SD, Dhodamani AG, More KV, Dongale TD, Kamat RK, Acquah SFA, Dalal NS, Panda DK (2018) Structural and optical properties of nanocrystalline TiO2 with multiwalled carbon nanotubes and its photovoltaic studies using Ru(II) sensitizers. ACS Omega 3:2743–2756

    Article  CAS  Google Scholar 

  40. Anjidania M, Moghaddama HM, Ojanib R (2017) Binder-free MWCNT/TiO2 multilayer nanocomposite as an efficient thin interfacial layer for photoanode of dye sensitized solar cell. Mater Sci Semicond Process 71:20–28

    Article  CAS  Google Scholar 

  41. Rodríguez LAA, Pianassolaa M, Travessaa DN (2017) Production of TiO2 coated multiwall carbon nanotubes by the sol-gel technique. Mater Res 20:96–103

    Article  Google Scholar 

  42. Shetti NP, Nayak DS, Malode SJ, Kulkarni RM (2018) Fabrication of MWCNTs and Ru doped TiO2 nanoparticles composite carbon sensor for biomedical application. ECS J Solid State Sci Technol 7:Q3070–Q3078

    Article  CAS  Google Scholar 

  43. Koli VB, Dhodameni AG, Delekar SD, Pawar SH (2017) In situ sol-gel synthesis of anatase TiO2-MWCNTs nanocomposites and their photocatalytic applications. J Photochem Photobiol A 33:40–48

    Article  CAS  Google Scholar 

  44. Yang Y-L, Unnikrishnan B, Chen S-M (2011) Immobilization of cytochrome c on multi-walled carbon nanotube-poly(vinylsulfonic acid) composite film and its application for amperometric determination of H2O2. Int J Electrochem Sci 6:3743–3753

    CAS  Google Scholar 

  45. Iost RM, Madurro JM, Brito-Madurro AG, Nantes IL, Caseli L, Crespilho FN (2011) Strategies of nano-manipulation for application in electrochemical biosensors. Int J Electrochem Sci 6:2965–2997

    CAS  Google Scholar 

  46. Wang Y, Bian X, Liao L, Zhu J, Guo K, Kong J, Liu B (2012) Electrochemistry and biosensing activity of cytochrome c immobilized on a mesoporous interface assembled from carbon nanospheres. Microchim Acta 178:277–283

    Article  CAS  Google Scholar 

  47. Katsiaounis S, Tiflidis C, Tsekoura C, Topoglidis E (2018) Electrochemical and spectroelectrochemical characterization of different mesoporous TiO2 film electrodes for the immobilization of Cyt-c. Front Mater Sci 12:64–73

    Article  Google Scholar 

  48. Benetti D, Dembele KT, Benavides J, Zhao H, Cloutier S, Concina I, Vomiero A, Rosei F (2016) Functionalized multi-wall carbon nanotubes/TiO2 composites as efficient photoanodes for dye sensitized solar cells. J Mater Chem C 4:3555–3562

    Article  CAS  Google Scholar 

  49. Gao B, Chen GZ, Puma GL (2009) Carbon nanotubes/titanium dioxide (CNTs/TiO2) nanocomposites prepared by conventional and novel surfactant wrapping sol–gel methods exhibiting enhanced photocatalytic activity. Appl Catal B Environ 89:503–509

    Article  CAS  Google Scholar 

  50. Ma L, Chen A, Zhang Z, Lu J, He H, Li C (2013) A new fabrication method of uniformly distributed TiO2/CNTs composite film by in-situ chemical vapour deposition. Mater Lett 96:203–205

    Article  CAS  Google Scholar 

  51. Dai G, Zhao L, Wang S, Hu J, Dong B, Lu H, Li J (2012) Double-layer composite film based on sponge-like TiO2 and P25 as photoelectrode for enhanced efficiency in dye-sensitized solar cells. J Alloys Compd 539:264–270

    Article  CAS  Google Scholar 

  52. Moore GR, Pettigrew GW (1990) Cytochrome c: evolution, structure, and physicochemical aspects. Springer-Verlag, Berlin

    Book  Google Scholar 

  53. Nocum M, Kwasny S, Kwasny M, Grelowska I (2018) Spectroscopy studies of TiO2/carbon nanotubes nanocomposite layers synthesized by the sol-gel method. J Mol Struct 1167:194–199

    Article  CAS  Google Scholar 

  54. Lee K-P, Gopalan AI, Komathi S (2009) Direct electrochemistry of cytochrome c and biosensing for hydrogen peroxide on polyaniline grafted multi-walled carbon nanotube electrode. Sensors Actuators B Chem 141:518–525

    Article  CAS  Google Scholar 

  55. Stellwagen E (1978) Heme exposure as determinate of oxidation-reduction potential of heme proteins. Nature 275:73–74

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by a small initiative grant from the University of Patras.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Topoglidis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 454 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Topoglidis, E., Kolozoff, PA., Tiflidis, C. et al. Adsorption and electrochemical behavior of Cyt-c on carbon nanotubes/TiO2 nanocomposite films fabricated at various annealing temperatures. Colloid Polym Sci 296, 1353–1364 (2018). https://doi.org/10.1007/s00396-018-4358-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-018-4358-z

Keywords

Navigation